首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   21篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1964年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
11.
12.
The vertical and horizontal distribution of the cyanobacterium, Planktothrix rubescens, was studied in a deep alpine lake (Lac du Bourget) in a 2-year monitoring program with 11 sampling points, and a 24-h survey at one sampling station. This species is known to proliferate in the metalimnic layer of numerous deep mesotrophic lakes in temperate areas, and also to produce hepatotoxins. When looking at the distribution of P. rubescens at the scale of the entire lake, we found large variations (up to 10 m) in the depth of the biomass peak in the water column. These variations were closely correlated to isotherm displacements. We also found significant variations in the distribution of the cyanobacterial biomass in the northern and southern parts of the lake. We used a physical modeling approach to demonstrate that two internal wave modes can explain these variations. Internal waves are generated by wind events, but can still be detected several days after the end of these events. Finally, our 24-h survey at one sampling point demonstrated that the V1H1 sinusoidal motion could evolve into nonlinear fronts. All these findings show that internal waves have a major impact on the distribution of P. rubescens proliferating in the metalimnic layer of a deep lake, and that this process could influence the growth of this species by a direct impact on light availability.  相似文献   
13.
Cadmium stress: an oxidative challenge   总被引:5,自引:0,他引:5  
At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.  相似文献   
14.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   
15.
Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem.  相似文献   
16.

Background and Scope

Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored.

Methods

Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants.

Key Results

The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium.

Conclusions

Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.  相似文献   
17.

Introduction

Obesity-susceptibility loci have been related to adiposity traits in adults and may affect body fat estimates in adolescence. There are indications that different sets of obesity-susceptibility loci influence level of and change in obesity-related traits from adolescence to adulthood.

Objectives

To investigate whether previously reported obesity-susceptible loci in adults influence adiposity traits in adolescence and change in BMI and waist circumference (WC) from adolescence into young adulthood. We also examined whether physical activity modifies the effects of these genetic loci on adiposity-related traits.

Methods

Nine obesity-susceptibility variants were genotyped in 1 643 adolescents (13–19 years old) from the HUNT study, Norway, who were followed-up into young adulthood. Lifestyle was assessed using questionnaires and anthropometric measurements were taken. The effects of genetic variants individually and combined in a genetic predisposition score (GPS) on obesity-related traits were studied cross-sectionally and longitudinally. A modifying effect of physical activity was tested.

Results

The GPS was significantly associated to BMI (B: 0.046 SD/allele [0.020, 0.073], p = 0.001) in adolescence and in young adulthood (B: 0.041 SD/allele [0.015, 0.067], p = 0.002) as it was to waist circumference (WC). The GPS was not associated to change in BMI (p = 0.762) or WC (p = 0.726). We found no significant interaction effect between the GPS and physical activity.

Conclusions

Our observations suggest that obesity-susceptibility loci established in adults affect BMI and WC already in adolescence. However, an association with change in adiposity-related traits from adolescence to adulthood could not be verified for these loci. Neither could an attenuating effect of physical activity on the association between the obesity-susceptibility genes and body fat estimates be revealed.  相似文献   
18.
19.
The NucliSens Extractor in combination with the 2.0 version of the Roche Cobas HCV Amplicor test has been validated by five European blood screening laboratories in a multi-centre study. For testing the performance characteristics of this HCV-NAT method, the European Pharmacopoeia validation guidelines were followed. The CLB VQC reference reagents were used for testing robustness and sensitivity. After a technical improvement in the extraction stations, the NucliSens Extractor appeared to be contamination-free as was proved by testing negative controls alternating with samples containing a high HCV-RNA concentration. The Pelicheck HCV-RNA genotype 1 dilution panel was tested 74 times in the five laboratories and an overall 95% detection limit of 80 genome equivalents (geq)/ml was found. In one laboratory the Pelicheck panel was tested in 25 runs and here a 95% detection limit of 32 geq/ml was achieved. In this laboratory the Pelispy HCV-RNA run control samples of 140 geq/ml were consistently picked up in all extractor stations. In addition the laboratories have tested a WHO HCV-RNA genotype 1 standard dilution series 39 times and a Pelicheck HCV-RNA genotype 3 reference panel in 32 test runs. The limiting dilution analysis enabled us to compare the detection efficiency of the NucliSens-Amplicor method for the genoype 1 and genotype 3 isolates and to calibrate the reference reagents against each other. The combined Nuclisens-Amplicor method was found to detect the genotype 3 isolate in the Pelicheck HCV-RNA panels with 2-3 fold lower efficiency than the genotype 1 standard (assuming that the historical calibration of the genotype 3 against the genotype 1 standard is correct). In this study of a single method 1 IU of the WHO HCV-RNA standard was found to be equivalent to 5.1 geq of the VQC HCV-RNA standard (95% confidence intervals 3.1-9.1 geq). To avoid confusion with the use of the CLB VQC reagents we accept the NIBSC collaborative study in which calibration by a variety of methods showed that the Pelispy 380 geq/ml run control is equivalent to 100 IU/ml of the WHO standard. This multi-centre validation study demonstrates that the 95% detection limit of the NucliSens HCV Amplicor method lies far below the detection limits required by the international regulatory bodies.  相似文献   
20.
The involvement of the ascorbate-glutathione cycle in the defence against Cu-induced oxidative stress was studied in the roots of Phaseolus vulgaris L. cv. Limburgse vroege. All the enzymes of this cycle [ascorbate peroxidase (APOD), EC 1.11.1.11; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; dehydroascorbate reductase (DHAR), EC 1.8.5.1; glutathione reductase (GR), EC 1.6.4.2] were increased, and the total ascorbate and glutathione pools rose after a 15 μ M root Cu treatment. In the first hours after the start of the experiment, the accumulation of dehydroascorbate (DHA), formed as a result of a Cu-mediated direct oxidation of ascorbate (AA), was limited by a non-enzymatic reduction using glutathione (GSH) as the reductant. At 24 h, the enzyme capacities of both DHAR and GR were increased to maintain the redox status of the AA and GSH pools. After 72 h of Cu application, the DHAR capacity was inhibited and MDHAR was responsible for maintaining the AA pool in its reduced form. Although the GR capacity was enhanced after 72 h in the treated plants, the GSSG/GSH ratio was increased. This could be due to direct participation of GSH in the detoxification of Cu through reduction and complexation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号