首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   56篇
  国内免费   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   8篇
  2016年   2篇
  2015年   13篇
  2014年   16篇
  2013年   23篇
  2012年   25篇
  2011年   11篇
  2010年   21篇
  2009年   22篇
  2008年   12篇
  2007年   21篇
  2006年   23篇
  2005年   16篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   17篇
  2000年   17篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   9篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   10篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1971年   3篇
  1970年   3篇
  1959年   2篇
  1938年   2篇
排序方式: 共有451条查询结果,搜索用时 31 毫秒
71.
Design of angiotensin converting enzyme inhibitors.   总被引:6,自引:0,他引:6  
  相似文献   
72.
The COVID-19 pandemic has presented significant challenges and implications for the sports community. Thus, this study aimed to describe the prevalence of COVID-19 in Brazilian athletes and identify the epidemiological, clinical, athletic, life and health factors associated with the disease in these individuals. A cross-sectional study was performed involving 414 athletes from 22 different sports using an online questionnaire from August to November 2020. The association between the athletes’ characteristics and COVID-19 was evaluated using a logistic regression model. The prevalence of COVID-19 was 8.5%, although only 40% of athletes reported having been tested. Being under 27 years of age (3-fold), having children (~5-fold), having a teammate test positive for COVID-19 (2.5-fold), and smoking (14-fold) were associated with a possible higher risk of disease. Almost 20% of athletes self-reported musculoskeletal injuries during the period of the pandemic that was studied. Athletes with a university education (P = 0.02), a profession other than sports (P < 0.001), those from a low-income family (P = 0.01), and public health system users (P = 0.04) were significantly less frequently tested for COVID-19, whereas international competitors, athletes who received a wage, and athletes who had a teammate who tested positive for COVID-19 were 2-, 3-, and 15-fold more likely to be tested for COVID-19, respectively. Approximately 26% of the athletes who tested negative or were untested reported more than three characteristic COVID-19 symptoms, and 11% of athletes who tested positive for COVID-19 were asymptomatic. The identification of modifiable (have children, smoking, and teammates positively tested) and non-modifiable (age under 27 years) factors related to COVID-19 in athletes can contribute to implementing surveillance programmes to decrease the incidence of COVID-19 in athletes and its negative impacts in sports.  相似文献   
73.
74.
A major aim of landscape genetics is to understand how landscapes resist gene flow and thereby influence population genetic structure. An empirical understanding of this process provides a wealth of information that can be used to guide conservation and management of species in fragmented landscapes and also to predict how landscape change may affect population viability. Statistical approaches to infer the true model among competing alternatives are based on the strength of the relationship between pairwise genetic distances and landscape distances among sampled individuals in a population. A variety of methods have been devised to quantify individual genetic distances, but no study has yet compared their relative performance when used for model selection in landscape genetics. In this study, we used population genetic simulations to assess the accuracy of 16 individual‐based genetic distance metrics under varying sample sizes and degree of population genetic structure. We found most metrics performed well when sample size and genetic structure was high. However, it was much more challenging to infer the true model when sample size and genetic structure was low. Under these conditions, we found genetic distance metrics based on principal components analysis were the most accurate (although several other metrics performed similarly), but only when they were derived from multiple principal components axes (the optimal number varied depending on the degree of population genetic structure). Our results provide guidance for which genetic distance metrics maximize model selection accuracy and thereby better inform conservation and management decisions based upon landscape genetic analysis.  相似文献   
75.
Sex steroid hormones and receptors play an important role in maintaining vaginal physiology. Disruptions in steroid receptor signaling adversely impact vaginal function. Limited studies are available investigating the effects of diabetic complications on steroid receptor expression and distribution in the vagina. The goals of this study were to investigate type 2 diabetes-induced changes in expression, localization and distribution of estrogen (ER), progesterone (PR) and androgen receptors (AR) in the vagina and to determine if estradiol treatment ameliorates these changes. Eight-week-old female diabetic (db/db) mice (strain BKS.Cg-m+/+ Leprdb/J) were divided into two subgroups: untreated diabetic and diabetic animals treated with pellets containing estradiol. Control normoglycemic littermates were subcutaneously implanted with pellets devoid of estradiol. At 16 weeks of age, animals were sacrificed, vaginal tissues excised and analyzed by Western blot and immunohistochemical methods. Diabetes produced marked reductions in protein expression of ER, PR, and AR. Diabetes also resulted in marked differences in the distribution, staining intensity and proportion of immunoreactive cells containing these steroid receptors in the epithelium, lamina propria and muscularis. Treatment of diabetic animals with estradiol restored receptor protein expression and distribution similar to those levels observed in control animals. This study demonstrates that type 2 diabetes markedly reduces steroid receptor protein expression and distribution in the vagina. Estradiol treatment of diabetic animals ameliorates these diabetes-induced changes.  相似文献   
76.
A number of proteins that play key roles in biological regulatory events undergo a process of post-translational modifications termed prenylation. The prenylation pathway consists of three enzymatic steps; the final processed protein is isoprenoid-modified and methylated on the C-terminal cysteine. This protein modification pathway plays a significant role in cancer biology because many oncogenic proteins undergo prenylation. Methylation of the C terminus by isoprenylcysteine carboxylmethyltransferase (Icmt) is the final step in the prenylation pathway. Cysmethynil, a specific Icmt inhibitor discovered in our laboratory, is able to inhibit Ras-mediated signaling, cell growth, and oncogenesis. We sought to examine the role of Icmt-mediated methylation on the behaviors of cancer cells associated with metastatic potential. Our results indicate that inhibition of methylation reduces migration of the highly metastatic MDA-MB-231 breast cancer cell line. In addition, cell adhesion and cell spreading are also significantly impacted by cysmethynil. To examine the mechanism of Icmt-dependent migration we focused on RhoA and Rac1, prenylated proteins that are important mediators of cell migration through their control of the actin cytoskeleton. Inhibition of Icmt significantly decreases the activation of both RhoA and Rac1; an increase in Rho GDP-dissociation inhibitor (RhoGDI) binding in the absence of methylation appears to contribute to this effect. Furthermore, in the absence of Icmt activity the addition of exogenous RhoA or Rac1 is able to partially rescue directed and random migration, respectively. These findings establish a role for Icmt-mediated methylation in cell migration and advance our understanding of the biological consequences of Rho methylation.Post-translational modifications of proteins play vital roles in many aspects of cell biology. Hence, identifying and understanding the biological impact of these processes is crucial to furthering our basic understanding of how cells function. Numerous proteins that control important biological regulatory events undergo a complex series of post-translational modifications that are directed by the presence of a so-called CaaX motif at their C terminus. This post-translational pathway, termed protein prenylation, is initiated by the attachment of an isoprenoid lipid to an invariant cysteine residue, the C of the CaaX motif (1, 2). Either a 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoid is covalently attached to this cysteine by protein farnesyltransferase (FTase)2 or protein geranylgeranyltransferase-I (GGTase-I), respectively (3). The prenylation step is followed by cleavage of the three C-terminal amino acids (the -AAX) by an endoplasmic reticulum (ER)-bound protease termed Rce1. Finally, the prenylated cysteine, which is now located at the C terminus, is methylated by isoprenylcysteine carboxylmethyltransferase (Icmt), another integral ER membrane protein (4, 5). The final result of these modifications is a protein that contains a prenylated and methylated cysteine at its C terminus. Numerous studies have demonstrated that this post-translational processing not only facilitates protein association with cellular membranes, but also can play important roles in protein-protein interactions and protein stability (1, 6, 7). Thus, it is clear that CaaX processing is necessary for the biological activities of these proteins.The prenylation pathway has been targeted for potential anticancer therapy because most members of the Ras superfamily, which contains many known oncogenes, undergo CAAX processing. The Ras superfamily consists of five large subfamilies; the two most well-characterized are the Ras and Rho subfamilies (8). Both Ras and Rho proteins are processed by the CaaX pathway; Ras family members are farnesylated, while most Rho family members are geranylgeranylated. These monomeric GTPases cycle between a GDP-bound inactive state and a GTP-bound active state. In their active states, Ras and Rho subfamily members control numerous cell signaling pathways that are involved in cell proliferation, differentiation, migration, polarity, and morphology (9).Abnormally high activity of Ras and Rho signaling pathways contribute to initiation and progression of many types of cancer (10, 11). For example, many breast cancers that are highly metastatic express abnormally high levels of Rho proteins (12). Rho proteins control migration and invasion of cells by tightly coordinating changes in the actin and microtubule cytoskeletons. Acting through their effectors, Rho proteins rearrange the actin cytoskeleton to respond to chemo-attractant gradients, polarize cells, and control migration and invasion. While cell migration is necessary for development, leukocyte function, and other normal cell biologies, dysregulation of migration and invasion results in cancer metastasis (13). Metastasis is an important and deadly progression of cancer and understanding the biology of migrating cancer cells is crucial for therapeutic targeting of this aspect of cancer.Pharmacologic targeting of the enzymes involved in the CaaX-processing pathway has emerged as a promising anticancer strategy. In particular, there has been much effort in designing inhibitors against the protein prenyltransferases, most notably FTase (14, 15). There is also recent evidence that inhibition of geranygeranylation of Rho proteins also impacts oncogenesis and metastasis (1618). However, the overall success of the FTase inhibitors (FTIs) in the clinical setting has been somewhat disappointing. One possible reason is a phenomenon termed “alternate prenylation” in which some FTase substrates, most notably K- and N- Ras, are modified by GGTase and escape inhibition by FTIs (1921). Because the Rce1 protease and Icmt methyltransferase act on all CaaX proteins, problems such as alternate prenylation would not arise if these enzymes were targeted. Hence, while protein prenyltransferase inhibitors still show some promise as anticancer agents, the emerging view that global attenuation of CaaX protein function may be advantageous in blocking cancer cell growth has increased interest in studying the two downstream enzymes involved in CaaX processing.While the biological consequences of prenylation are fairly well understood, the precise roles of C-terminal methylation in CaaX protein function are still elusive. Depending on the CaaX protein, methylation has been ascribed to roles in localization, protein-protein interactions and protein stability (11). The development of an Icmt knock-out mouse model has furthered our understanding of Icmt function (22, 23). Localization studies conducted in cells with genetically deleted Icmt have shown that methylation is important for proper membrane association of Ras proteins. However, the localization of Rho proteins in the absence of Icmt activity appears to be more complicated and may vary depending on family member and activation status (2426). Importantly, inhibition of CaaX protein methylation via either genetic or pharmacologic targeting has shown a clear impact on oncogenic transformation and tumor growth (23, 27, 28).Defining the role of Icmt-mediated methylation in complex cellular behaviors such as migration and invasion is crucial for furthering our understanding of the impact of CaaX protein methylation on the biology of normal and cancer cells. In the current study, we have assessed the impact of Icmt inhibition on cell biological processes associated with the function of Rho proteins, specifically cell adhesion, morphology, and migration. We found that inhibition of Icmt results in a disruption of the actin cytoskeleton and impairs ligand-mediated activation of RhoA and Rac1, a potential consequence of increased RhoGDI binding to both RhoA and Rac1 when their methylation is impaired. Further, we show that the impact of Icmt inhibition on cell migration is due at least in part to impairment of RhoA and Rac1function. These findings establish a role for Icmt-mediated methylation in cell migration and further elucidate the role that methylation plays in the function of Rho GTPases.  相似文献   
77.

Background  

Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult.  相似文献   
78.
Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.  相似文献   
79.
A method has been developed that relies on a two-step, one-pot condensation between phthalide and 2-carboxybenzaldehydes to provide benz[d]indeno[1,2-b]pyran-5,11-diones in a multi-gram fashion. Treatment of these compounds with a primary amine allows rapid access to various N-substituted indenoisoquinolines, whose in vitro anticancer activity and topoisomerase I inhibition have been evaluated.  相似文献   
80.
采用静态箱-气相色谱法对晚稻田甲烷(CH4)和氧化亚氮(N2O)排放进行田间原位测定。结果表明,有植株参与的稻田CH4排放通量季节变化与地下5cm温度呈显著正相关关系。稻田CH4和N2O季节平均排放通量在有植株参与时分别为1.16±0.38mgm-2h-1和42.33±20.00μgm-2h-1,而无植株参与的分别为0.15±0.11mgm-2h-1和51.69±15.87μgm-2h-1。水稻种植对CH4的排放影响较大,对N2O的排放影响较小,有植株参与的稻田CH4平均排放量显著高于无植株参与的稻田,N2O的平均排放量无显著差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号