首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2638篇
  免费   311篇
  国内免费   1篇
  2950篇
  2021年   48篇
  2020年   26篇
  2019年   24篇
  2018年   30篇
  2017年   38篇
  2016年   51篇
  2015年   108篇
  2014年   117篇
  2013年   107篇
  2012年   147篇
  2011年   169篇
  2010年   97篇
  2009年   74篇
  2008年   102篇
  2007年   113篇
  2006年   109篇
  2005年   109篇
  2004年   98篇
  2003年   92篇
  2002年   103篇
  2001年   57篇
  2000年   52篇
  1999年   38篇
  1998年   43篇
  1997年   36篇
  1996年   34篇
  1995年   35篇
  1994年   41篇
  1993年   39篇
  1992年   29篇
  1991年   47篇
  1990年   38篇
  1989年   36篇
  1988年   22篇
  1987年   31篇
  1986年   33篇
  1985年   40篇
  1984年   34篇
  1983年   32篇
  1982年   22篇
  1981年   29篇
  1980年   34篇
  1979年   23篇
  1978年   29篇
  1977年   26篇
  1975年   30篇
  1974年   23篇
  1973年   25篇
  1971年   19篇
  1970年   19篇
排序方式: 共有2950条查询结果,搜索用时 15 毫秒
61.
Almost any modern reader’s first encounter with Darwin’s writing is likely to be the “Historical Sketch,” inserted by Darwin as a preface to an early edition of the Origin of Species, and having since then appeared as the preface to every edition after the second English edition. The Sketch was intended by him to serve as a short “history of opinion” on the species question before he presented his own theory in the Origin proper. But the provenance of the “Historical Sketch” is somewhat obscure. Some things are known about its production, such as when it first appeared and what changes were made to it between its first appearance in 1860 and its final form, for the fourth English edition, in 1866. But how it evolved in Darwin’s mind, why he wrote it at all, and what he thought he was accomplishing by prefacing it to the Origin remain questions that have not been carefully addressed in the scholarly literature on Darwin. I attempt to show that Darwin’s various statements about the “Historical Sketch,” made primarily to several of his correspondents between 1856 and 1860, are somewhat in conflict with one another, thus making problematic a satisfactory interpretation of how, when, and why the Sketch came to be. I also suggest some probable resolutions to the several difficulties. How Darwin came to settle on the title “Historical Sketch” for the Preface to the Origin is not certain, but a guess may be ventured. When he first submitted the text to Asa Gray in February 1860 he called it simply “Preface Contributed by the Author to this American Edition” (Burkhardt et al., eds., vol. 8, 1993, p. 572; the collected correspondence is hereafter cited as CCD). In fact he had thought of it as being properly called a Preface much earlier, perhaps as early as 1856, as will be seen in what follows. It came to be called “An Historical Sketch of the Recent Progress of Opinion on the Origin of Species” only in the third English edition, April 1861. This is the title it retained thereafter, with the exception of an addition to the title in the sixth English edition, “Previously to the Publication of the First Edition of this Work” (Peckham, 1959, pp. 20, 59). The word “sketch,” on the other hand was one of two words Darwin commonly used in private correspondence to refer to the book that would later become the Origin, the other word being “Abstract,” and both signifying that Darwin thought of the work as being a resume rather than a full-fledged study (e.g., letter to J.D. Hooker, May 9 1856, CCD vol. 6 p. 106; letter to Baden Powell January 18 1860, CCD vol. 8 p. 41; letter to Lyell 25 June 1858, CCD v. 7, 1991, pp. 117–8; letter to Lyell May 1856, CCD, v. 6 p. 100). The most likely source of the title “Historical Sketch” for Darwin’s Preface is Charles Lyell’s Principles of Geology in which, beginning with the third edition (1834), Lyell added titles to his chapters, calling chapters 2–4 “Historical Sketch of the Progress of Geology” (Secord, in Lyell [1997], p. xlvii; for other uses by Lyell of this expression, cf. Porter, 1976, p. 95; idem 1982, p. 38; and Lyell, 1830 [1990], p. 30). Further parallels between Lyell’s Introduction and Darwin’s “Historical Sketch” in terms of content and strategy are suggested below.  相似文献   
62.
63.
64.
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams–Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.  相似文献   
65.
Arp  W. J.  Drake  B. G.  Pockman  W. T.  Curtis  P. S.  Whigham  D. F. 《Plant Ecology》1993,(1):133-143
Elevated atmospheric CO2 is known to stimulate photosynthesis and growth of plants with the C3 pathway but less of plants with the C4 pathway. An increase in the CO2 concentration can therefore be expected to change the competitive interactions between C3 and C4 species. The effect of long term exposure to elevated CO2 (ambient CO2 concentration +340 µmol CO2 mol-1) on a salt marsh vegetation with both C3 and C4 species was investigated. Elevated CO2 increased the biomass of the C3 sedgeScirpus olneyi growing in a pure stand, while the biomass of the C4 grassSpartina patens in a monospecific community was not affected. In the mixed C3/C4 community the C3 sedge showed a very large relative increase in biomass in elevated CO2 while the biomass of the C4 species declined.The C4 grassSpartina patens dominated the higher areas of the salt marsh, while the C3 sedgeScirpus olneyi was most abundant at the lower elevations, and the mixed community occupied intermediate elevations.Scirpus growth may have been restricted by drought and salt stress at the higher elevations, whileSpartina growth at the lower elevations may be affected by the higher frequency of flooding. Elevated CO2 may affect the species distribution in the salt marsh if it allowsScirpus to grow at higher elevations where it in turn may affect the growth ofSpartina.  相似文献   
66.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is projected to rise to the second leading cause of U.S. cancer-related deaths by 2020. Novel therapeutic targets are desperately needed. MicroRNAs (miRs) are small noncoding RNAs that function by suppressing gene expression and are dysregulated in cancer. miR-21 is overexpressed in PDAC tumor cells (TC) and is associated with decreased survival, chemoresistance and invasion. Dysregulation of miR regulatory networks in PDAC tumor-associated fibroblasts (TAFs) have not been previously described. In this study, we show that miR-21 expression in TAFs promotes TC invasion.

Methods

In-situ hybridization for miR-21 was performed on the 153 PDAC patient UCLA tissue microarray and 23 patient-matched lymph node metastases. Stromal and TC histoscores were correlated with clinicopathologic parameters by univariate and multivariate Cox regression. miR-21 positive cells were further characterized by immunofluorescence for mesenchymal/epithelial markers. For in vitro studies, TAFs were isolated from freshly resected human PDAC tumors by the outgrowth method. miR-21 was overexpressed/inhibited in fibroblasts and then co-cultured with GFP-MiaPaCa TCs to assess TC invasion in modified Boyden chambers.

Results

miR-21 was upregulated in TAFs of 78% of tumors, and high miR-21 significantly correlated with decreased overall survival (P = 0.04). Stromal miR-21 expression was also significantly associated with lymph node invasion (P = 0.004), suggesting that it is driving TC spread. Co-immunofluorescence revealed that miR-21 colocalized with peritumoral fibroblasts expressing α-smooth muscle actin. Moreover, expression of miR-21 in primary TAFs correlated with miR-21 in TAFs from patient-matched LN metastases; evidence that PDAC tumor cells induce TAFs to express miR-21. miR-21 expression in TAFs and TCs promotes invasion of TCs and is inhibited with anti-miR-21.

Conclusions

miR-21 expression in PDAC TAFs is associated with decreased overall survival and promotes TC invasion. Anti-miR-21 may represent a novel therapeutic strategy for dual targeting of both tumor and stroma in PDAC.  相似文献   
67.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.  相似文献   
68.
The juvenile hormone antagonist ETB (ethyl-4-2(t-butylcarbonyloxy)-butoxybenzoate) caused formation of precocious larval-pupal intermediates after the 4th (penultimate)-larval instar of the tobacco hornworm, Manduca sexta, when 50 μg were applied to any 3rd stage larvae or to 4th stage larvae within 12 hr after ecdysis. This dose was most effective within 12 hr after ecdysis to the 3rd stage. In the black mutant larval assay for juvenile hormone, ETB had activity, 0.75 μg per larva giving half-maximal score. In vitro ETB acted as a juvenile hormone to prevent the ecdysteroid-induced change in commitment at concentrations above 0.1 μg/ml with an ED50 at 2.8 μg/ml and as a partial juvenile hormone antagonist to 0.1 μg/ml juvenile hormone I at concentrations between 10?3 and 10?2 μg/ml. By contrast, EMD (ethyl-E-3-methyl-2-dodecenoate) had little juvenile hormone-like activity in vitro up to its limits of solubility (100 μg/ml) and exhibited sporadic partial juvenile hormone antagonistic activity in vitro at concentrations between 1 and 100 μg/ml. Since these concentrations were 10–1000 times that of juvenile hormone I in the medium, EMD apparently is not an efficient competitor.  相似文献   
69.
Sorsby's fundus dystrophy (SFD) is a dominantly inherited degenerative disease of the retina that leads to loss of vision in middle age. It has been shown to be caused by mutations in the gene for tissue inhibitor of metalloproteinases-3 (TIMP-3). Five different mutations have previously been identified, all introducing an extra cysteine residue into exon 5 (which forms part of the C-terminal domain) of the TIMP-3 molecule; however, the significance of these mutations to the disease phenotype was unknown. In this report, we describe the expression of several of these mutated genes, together with a previously unreported novel TIMP-3 mutation from a family with SFD that results in truncation of most of the C-terminal domain of the molecule. Despite these differences, all of these molecules are expressed and exhibit characteristics of the normal protein, including inhibition of metalloproteinases and binding to the extracellular matrix. However, unlike wild-type TIMP-3, they all form dimers. These observations, together with the recent finding that expression of TIMP-3 is increased, rather than decreased, in eyes from patients with SFD, provides compelling evidence that dimerized TIMP-3 plays an active role in the disease process by accumulating in the eye. Increased expression of TIMP-3 is also observed in other degenerative retinal diseases, including the more severe forms of age-related macular degeneration, the most common cause of blindness in the elderly in developed countries. We hypothesize that overexpression of TIMP-3 may prove to be a critical step in the progression of a variety of degenerative retinopathies.  相似文献   
70.
A human neuroreceptor clone (G21), which was isolated by cross-hybridization with the human clone for the beta 2-adrenergic receptor, has recently been shown to encode the gene for the 5HT1A receptor (HTR1A) subtype. In situ hybridization to human metaphase chromosomes mapped the G21 sequence to chromosome 5 at bands 5q11.2-q13. The clone G21 recognizes a SacI RFLP with low heterozygosity (0.13). To increase the informativeness of the HTR1A locus we have isolated two new cosmid clones containing the receptor gene. No polymorphic microsatellites were present in the cosmids. However, one cosmid revealed a new TaqI RFLP that showed tight linkage to new highly polymorphic microsatellites for the loci D5S76, D5S39, and D5S6 in seven British and Icelandic reference pedigrees (maximum LOD of 13.2 with D5S76).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号