首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2591篇
  免费   308篇
  2899篇
  2021年   47篇
  2020年   26篇
  2019年   24篇
  2018年   29篇
  2017年   35篇
  2016年   51篇
  2015年   107篇
  2014年   115篇
  2013年   103篇
  2012年   145篇
  2011年   168篇
  2010年   89篇
  2009年   68篇
  2008年   100篇
  2007年   111篇
  2006年   106篇
  2005年   108篇
  2004年   98篇
  2003年   91篇
  2002年   103篇
  2001年   56篇
  2000年   52篇
  1999年   38篇
  1998年   40篇
  1997年   35篇
  1996年   33篇
  1995年   34篇
  1994年   39篇
  1993年   39篇
  1992年   29篇
  1991年   47篇
  1990年   37篇
  1989年   36篇
  1988年   22篇
  1987年   31篇
  1986年   33篇
  1985年   40篇
  1984年   34篇
  1983年   31篇
  1982年   21篇
  1981年   29篇
  1980年   34篇
  1979年   23篇
  1978年   29篇
  1977年   25篇
  1975年   30篇
  1974年   23篇
  1973年   25篇
  1971年   19篇
  1970年   19篇
排序方式: 共有2899条查询结果,搜索用时 15 毫秒
941.
Degradation and destruction of valuable spawning and rearing habitat due to anthropogenic changes (e.g., flow modification and channelisation) is known to have dramatic impacts on fish populations. To compensate for habitat losses due to hydropower development, an artificial fluvial habitat channel (‘Compensation Creek’) was constructed in south-central Newfoundland, Canada. The creek was designed to include appropriate habitat features for the two dominant salmonid fish species, landlocked Atlantic salmon (Salmo salar L.) and brook charr (Salvenius fontinalis Mitchell). The study examines the habitat use of landlocked Atlantic salmon and brook charr in the Compensation Creek using electromyogram (EMG) radio telemetry. Ten landlocked Atlantic salmon and eight brook charr were captured and tagged with EMG transmitters. In laboratory swimming experiments, the EMG values were calibrated against swimming speed. Fish were then released in the Compensation Creek and tracked on a daily basis. The results show that (1) during residence in the creek, both species used preferentially the habitat features designed to match their rearing habitat preferences, and (2) swimming speed did not vary among habitat types for either species.  相似文献   
942.
Both instability and residual articular incongruity are implicated in the development of post-traumatic osteoarthritis (OA) following intra-articular fracture, but currently no information exists regarding cartilage stresses for unstable residual incongruities. In this study, a transversely isotropic poroelastic cartilage finite element model was implemented and validated within physiologically relevant loading ranges. This material model was then used to simulate the loading of cartilage during stable and unstable motion accompanying a step-off incongruity residual from intra-articular fracture, using load data from previous cadaver tests of ankle instability. Peak solid-phase stresses and fluid pressure were found to increase markedly in the presence of instability. Solid-phase transients of normal stress increased from 2.00 to 13.8 MPa/s for stable compared to unstable motion, and tangential stress transients increased from 17.1 to 118.1 MPa/s. Corresponding fluid pressure transients increased from 15.1 to 117.9 MPa/s for unstable motion. In the most rapidly loaded sections of cartilage, the fluid was found to carry nearly all of the normal load, with the pressurization of the fluid resulting in high solid matrix tangential stresses.  相似文献   
943.
Grimontia hollisae, formerly Vibrio hollisae, produces both smooth and rugose colonial variants. The rugose colony phenotype is characterized by wrinkled colonies producing copious amounts of exopolysaccharide. Cells from a rugose colony grown at 30 degrees C form rugose colonies, while the same cells grown at 37 degrees C form smooth colonies, which are characterized by a nonwrinkled, uncrannied appearance. Stress response studies revealed that after exposure to bleach for 30 min, rugose survivors outnumbered smooth survivors. Light scatter information obtained by flow cytometry indicated that rugose cells clumped into clusters of three or more cells (average, five cells) and formed two major clusters, while smooth cells formed only one cluster of single cells or doublets. Fluorescent lectin-binding flow cytometry studies revealed that the percentages of rugose cells that bound either wheat germ agglutinin (WGA) or Galanthus nivalis lectin (GNL) were greater than the percentages of smooth cells that bound the same lectins (WGA, 35% versus 3.5%; GNL, 67% versus 0.21%). These results indicate that the rugose exopolysaccharide consists partially of N-acetylglucosamine and mannose. Rugose colonies produced significantly more biofilm material than did smooth colonies, and rugose colonies grown at 30 degrees C produced more biofilm material than rugose colonies grown at 37 degrees C. Ultrastructurally, rugose colonies show regional cellular differentiation, with apical and lateral colonial regions containing cells embedded in a matrix stained by Alcian Blue. The cells touching the agar surface are packed tightly together in a palisade-like manner. The central region of the colony contains irregularly arranged, fluid-filled spaces and loosely packed chains or arrays of coccoid and vibrioid cells. Smooth colonies, in contrast, are flattened, composed of vibrioid cells, and lack distinct regional cellular differences. Results from suckling mouse studies showed that both orally fed rugose and smooth variants elicited significant, but similar, amounts of fluid accumulated in the stomach and intestines. These observations comprise the first report of expression and characterization of rugosity by G. hollisae and raise the possibility that expression of rugose exopolysaccharide in this organism is regulated at least in part by growth temperature.  相似文献   
944.
In human heart failure the role of wave generation by the ventricle and wave reflection by the vasculature is contentious. The aim of this study was to compare wave generation and reflection in normal subjects with patients with stable compensated heart failure. Twenty-nine normal subjects and 67 patients with heart failure (New York Heart Association class II or III) were studied by noninvasive techniques applied to the common carotid artery. Data were analyzed by wave intensity analysis to determine the nature and direction of waves during the cardiac cycle. The energy carried by an early systolic forward compression wave (S wave) generated by the left ventricle and responsible for acceleration of flow in systole was significantly reduced in subjects with heart failure (P < 0.001), and the timing of the peak of this wave was delayed. In contrast, reflection of this wave was increased in subjects with heart failure (P < 0.001), but the timing of reflections with respect to the S wave was unchanged. The energy of an expansion wave generated by the heart in protodiastole was unaffected by heart failure. The carotid artery wave speed and the augmentation index did not significantly differ between subjects with heart failure compared with normal individuals. The ability of the left ventricle to generate a forward compression wave is markedly impaired in heart failure. Increased wave reflection serves to maintain systolic blood pressure but also places an additional load on cardiac function in heart failure.  相似文献   
945.
946.
Using a successive discrimination procedure with rats, three experiments investigated the contribution of reinforcement rate and amount of S(Delta) exposure on the acquisition of an operant discrimination. S(D) components and were always 2 min in length, while S(Delta) (extinction) components were either 1 min or 4 min in length; responses in S(D) were reinforced on one of four schedules. In Experiment 1, each of eight groups were exposed to one possible combination of rate of reinforcement and S(Delta) component length. At every level of reinforcement, the 4 min S(Delta) groups acquired the discrimination more quickly. However, within each level of reinforcement, the proportions of responding in S(D) as a function cumulative S(Delta) exposure were equivalent, regardless of the number of reinforcers earned in S(D), suggesting that extinction is the "hallmark" of discrimination. Experiment 2 sought to replicate these results in a within-subjects design, and although the 4 min S(Delta) conditions always produced superior discriminations, the lack of discriminated responding in some conditions suggested that stimulus disparity was reduced. Experiment 3 clarified those results and extended the finding that the acquisition of operant discrimination closely parallels extinction of responding in S(Delta). In sum, it appears that higher reinforcement rates and longer S(Delta) exposure facilitate the acquisition of discriminated operant responding.  相似文献   
947.
Background information. Rho family GTPases are required for cytoskeletal reorganization and are considered important for the maturation of neurons. Among these proteins, Rac1 is known to play a crucial role in the regulation of actin dynamics, and a number of studies indicate the involvement of this protein in different steps of vertebrate neuronal maturation. There are two distinct Rac proteins expressed in neurons, namely the ubiquitous Rac1 and the neuron‐specific Rac3. The specific functions of each of these GTPases during early neuronal development are largely unknown. Results. The combination of the knockout of Rac3 with Rac1 down‐regulation by siRNA (small interfering RNA) has been used to show that down‐regulation of Rac1 affects dendritic development in mouse hippocampal neurons, without affecting axons. F‐actin levels are strongly decreased in neuronal growth cones following down‐regulation of Rac1, and time‐lapse analysis indicated that the reduction of Rac1 levels decreases growth‐cone dynamics. Conclusions. These results show that normal levels of endogenous Rac1 activity are critical for early dendritic development, whereas dendritic outgrowth is not affected in hippocampal neurons from Rac3‐null mice. On the other hand, early axonal development appears normal after Rac1 down‐regulation. Our findings also suggest that the initial establishment of neuronal polarity is not affected by Rac1 down‐regulation.  相似文献   
948.
Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.  相似文献   
949.
We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号