首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   20篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   11篇
  2013年   8篇
  2012年   15篇
  2011年   13篇
  2010年   5篇
  2009年   10篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1966年   2篇
  1949年   1篇
  1946年   1篇
  1944年   1篇
  1943年   2篇
  1940年   2篇
排序方式: 共有221条查询结果,搜索用时 31 毫秒
91.
92.
93.
Trifluoromethyl ketones as inhibitors of histone deacetylase   总被引:1,自引:0,他引:1  
Trifluoromethyl ketones were found to be inhibitors of histone deacetylases (HDACs). Optimization of this series led to the identification of submicromolar inhibitors such as 20 that demonstrated antiproliferative effects against the HT1080 and MDA 435 cell lines.  相似文献   
94.
95.
Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, affecting ∼18,000 new patients every year; its prognosis remains poor despite standard treatment with surgery, radiotherapy, and chemotherapy (temozolomide) (36-38, 44; J. C. Buckner, presented at the ASCO Annual Meeting, 2009). Complete resection is mostly impossible due to the highly infiltrative nature of this disease. Residual GBM cells remaining within the nonneoplastic brain parenchyma eventually lead to tumor recurrence that is resistant to conventional chemotherapy and radiotherapy, ultimately leading to the patient''s death (44). Several dendritic cell vaccination strategies aiming to stimulate the patient''s immune system to seek out and destroy residual brain tumor cells are currently under preclinical and clinical development and constitute a promising adjuvant treatment for GBM (18, 24, 42, 43, 45).We have developed a novel immunotherapeutic approach for GBM using first-generation adenoviral vectors (Ads) to deliver a combination of therapeutic transgenes into the tumor mass (2, 7, 9, 12, 14, 17, 48) which is slated to begin phase I clinical testing this year. In our strategy, rather than vaccinating against tumor antigens, we aim to reconstruct an immune circuit that is absent from the normal brain. Our gene therapy strategy consists of the conditionally cytotoxic herpes simplex virus type 1 thymidine kinase (TK) (2, 12), which kills proliferating tumor cells in the presence of the prodrug ganciclovir (GCV), used in combination with human soluble Fms-like tyrosine kinase 3 ligand (Flt3L), which recruits bone marrow-derived dendritic cells (DCs) to the normal brain or brain tumor microenvironment in mice (11, 12) and rats (1, 13). We previously showed that codelivery of Ad-Flt3L and Ad-TK into the brain tumor milieu induces an anti-GBM-specific immune response (9, 12, 17, 27, 48), leading to long-term survival of rats bearing intracranial CNS1, 9L, and F98 tumors (2, 17, 27) and mice bearing intracranial GL26, GL261, and B16-F10 tumors (12, 48). In addition, the combination of Ad-Flt3L plus Ad-TK induces GBM-specific immunological memory that improves survival in intracranial multifocal and recurrent models of GBM in both rats and mice (9, 12, 17, 20, 22, 27).First-generation adenoviral vectors have been used in clinical trials to deliver HSV1-TK (31). Ad-TK delivered into the margins of the tumor cavity after surgical resection of GBM was well tolerated in over 70 patients in six early clinical trials (19, 34). Publication of final results from a large, multicenter phase III trial involving 251 patients is awaited; preliminary analysis indicates small but statistically significant benefits from adding gene therapy to standard care. Final analysis will have to wait for the detailed publications (3, 16).To provide stable, long-term therapeutic transgene expression, “gutless,” high-capacity adenoviral (HC-Ad) vectors have been engineered in which all viral encoding genes have been eliminated and replaced with inert, noncoding stuffer DNA sequences (26, 30). In the presence of an anti-adenoviral immune response, transgene expression in the brain from first-generation Ads is reduced, while expression from HC-Ad vectors remains stable for at least 1 year (4, 25, 28). Therefore, we engineered two HC-Ad vectors to either constitutively express TK (HC-Ad-TK) (21, 27) or express Flt3L under the control of the tightly regulatable mCMV-TetOn expression system (HC-Ad-TetOn-Flt3L) (6, 8, 27, 47). Intratumoral administration of HC-Ad-TK and HC-Ad-TetOn-Flt3L led to high levels of therapeutic efficacy, and the therapy was well tolerated, with no overt toxicity and no spread of vector genomes outside the injected brain hemisphere in treated Lewis rats bearing syngeneic intracranial brain tumors (27).To reduce vector dose and facilitate GMP manufacturing of the clinical product, we engineered a novel, bicistronic HC-Ad vector that encodes, for the first time, both constitutively expressed HSV1-TK and inducible Flt3L from a single HC-Ad vector genome. Herein we demonstrate therapeutic efficacy of the bicistronic HC-Ad in naïve rats bearing intracranial tumors and also in tumor-bearing rats which had been exposed to adenoviruses and therefore exhibited anti-Ad immunity. The safety profile of this approach was assessed by evaluating the biodistribution of HC-Ad vector genomes, systemic and neurological toxicity, and behavioral abnormalities over the course of 1 year posttreatment. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.  相似文献   
96.
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants ( approximately 200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots.  相似文献   
97.
98.
The lack of professional afferent APCs in naive brain parenchyma contributes to the systemic immune ignorance to Ags localized exclusively within the brain. Dendritic cells (DCs) appear within the brain as a consequence of inflammation, but no molecular mechanisms accounting for this influx have been described. In this study we demonstrate that Fms-like tyrosine kinase 3 ligand (Flt3L) recruits plasmacytoid DCs (pDCs; >50-fold; p < 0.001) to the brain parenchyma. These pDCs expressed IFN-alpha, the hallmark cytokine produced by pDCs, indicating recruitment and activation in situ of bona fide pDCs within the brain parenchyma. Flt3L did not increase the numbers of conventional DCs, macrophages, or B, T, NK, NKT, or microglial cells within the brain. Our data demonstrate that Flt3L reconstitutes a crucial afferent component of the immune response, namely, professional APCs within the brain parenchyma, and this could counteract the intrinsic systemic immune ignorance to Ags localized exclusively within the brain.  相似文献   
99.
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.  相似文献   
100.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号