首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   9篇
  2014年   9篇
  2013年   3篇
  2012年   14篇
  2011年   12篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   5篇
  2006年   7篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1966年   2篇
  1949年   1篇
  1946年   1篇
  1944年   1篇
  1943年   2篇
  1940年   2篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
81.
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants ( approximately 200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots.  相似文献   
82.
83.
The lack of professional afferent APCs in naive brain parenchyma contributes to the systemic immune ignorance to Ags localized exclusively within the brain. Dendritic cells (DCs) appear within the brain as a consequence of inflammation, but no molecular mechanisms accounting for this influx have been described. In this study we demonstrate that Fms-like tyrosine kinase 3 ligand (Flt3L) recruits plasmacytoid DCs (pDCs; >50-fold; p < 0.001) to the brain parenchyma. These pDCs expressed IFN-alpha, the hallmark cytokine produced by pDCs, indicating recruitment and activation in situ of bona fide pDCs within the brain parenchyma. Flt3L did not increase the numbers of conventional DCs, macrophages, or B, T, NK, NKT, or microglial cells within the brain. Our data demonstrate that Flt3L reconstitutes a crucial afferent component of the immune response, namely, professional APCs within the brain parenchyma, and this could counteract the intrinsic systemic immune ignorance to Ags localized exclusively within the brain.  相似文献   
84.
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.  相似文献   
85.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   
86.
There is a wide inter-individual variation in PARP-1 {PAR [poly(ADP-ribose)] polymerase 1} activity, which may have implications for health. We investigated if the variation: (i) is due to polymorphisms in the PARP-1 gene or PARP-1 protein expression; and (ii) affects patients' response to anticancer treatment. We studied 56 HV (healthy volunteers) and 118 CP (cancer patients) with supporting in vivo experiments. PARP activity ranged between 10 and 2600 pmol of PAR/106 cells and expression between 0.02-1.55 ng of PARP-1/μg of protein. PARP-1 expression correlated with activity in HV (R2=0.19, P=0.003) and CP (R2=0.06, P=0.01). A short CA repeat in the promoter was significantly associated with increased cancer risk [OR (odds ratio), 5.22; 95% CI (confidence interval), 1.79-15.24]. PARP activity was higher in men than women (P=0.04) in the HV. Male mice also had higher PARP activity than females or castrated males. Oestrogen supplementation activated PARP in PBMCs (peripheral blood mononuclear cells) from female mice (P=0.003), but inhibited PARP-1 in their livers by 80%. PARP activity and expression were not dependent on the investigated polymorphisms, but there was a modest correlation of PARP activity with expression. Studies in the HV revealed sex differences in PARP activity, which was confirmed in mice and shown to be associated with sex hormones. Toxic response to treatment was not associated with PARP activity and/or expression.  相似文献   
87.
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish.  相似文献   
88.
Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.  相似文献   
89.

Background  

The increase in life expectancy within the general population has resulted in an increasing number of elderly adults, including patients with Down syndrome (DS), with a current life expectancy of about 50 years. We evaluate the parameters of humoral and cellular immune response, the quantitative expression of the regulator of calcineurin1 gene (RCAN1) and the production of cytokines. The study group consisted of adults DS (n = 24) and a control group with intellectual disability without Down syndrome (ID) (n = 21) and living in a similar environmental background. It was evaluated serology, immunophenotyping, the quantitative gene expression of RCAN1 and the production of cytokines.  相似文献   
90.
Regardless of the achievable remissions with first line hormone therapy in patients with prostate cancer (CaP), the disease escapes the hormone dependent stage to a more aggressive status where chemotherapy is the only effective treatment and no treatment is curative. This makes it very important to identify new targets that can improve the outcome of treatment. ATM and DNA-PK are the two kinases responsible for signalling and repairing double strand breaks (DSB). Thus, both kinases are pertinent targets in CaP treatment to enhance the activity of the numerous DNA DSB inducing agents used in CaP treatment such as ionizing radiation (IR). Colony formation assay was used to assess the sensitivity of hormone dependent, p53 wt (LNCaP) and hormone independent p53 mutant (PC3) CaP cell lines to the cytotoxic effect of IR and Doxorubicin in the presence or absence of Ku55933 and NU7441 which are small molecule inhibitors of ATM and DNA-PK, respectively. Flow cytometry based methods were used to assess the effect of the two inhibitors on cell cycle, apoptosis and H2AX foci formation. Neutral comet assay was used to assess the induction of DNA DSBs. Ku55933 or NU7441 alone increased the sensitivity of CaP cell lines to the DNA damaging agents, however combining both inhibitors together resulted in further enhancement of sensitivity. The cell cycle profile of both cell lines was altered with increased cell death, DNA DSBs and H2AX foci formation. This study justifies further evaluation of the ATM and DNA-PK inhibitors for clinical application in CaP patients. Additionally, the augmented effect resulting from combining both inhibitors may have a significant implication for the treatment of CaP patients who have a defect in one of the two DSB repair pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号