首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   47篇
  634篇
  2021年   6篇
  2018年   7篇
  2017年   4篇
  2016年   12篇
  2015年   18篇
  2014年   16篇
  2013年   20篇
  2012年   37篇
  2011年   23篇
  2010年   26篇
  2009年   15篇
  2008年   29篇
  2007年   32篇
  2006年   31篇
  2005年   19篇
  2004年   28篇
  2003年   24篇
  2002年   26篇
  2001年   9篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1986年   5篇
  1984年   6篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   7篇
  1977年   8篇
  1965年   5篇
  1939年   3篇
  1937年   4篇
  1936年   4篇
  1935年   8篇
  1934年   3篇
  1933年   3篇
  1932年   5篇
  1931年   6篇
  1930年   7篇
  1929年   11篇
  1927年   3篇
  1925年   3篇
  1897年   3篇
  1896年   3篇
  1892年   3篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
561.
The V protein of the recently emerged paramyxovirus, Nipah virus, has been shown to inhibit interferon (IFN) signal transduction through cytoplasmic sequestration of cellular STAT1 and STAT2 in high-molecular-weight complexes. Here we demonstrate that the closely related Hendra virus V protein also inhibits cellular responses to IFN through binding and cytoplasmic sequestration of both STAT1 and STAT2, but not STAT3. These findings demonstrate a V protein-mediated IFN signal evasion mechanism that is a general property of the known Henipavirus species.  相似文献   
562.
563.
Eukaryotic initiation factor 4E (eIF4E) binds the 5'-cap of eukaryotic mRNAs and overexpression of eIF4E in epithelial cell cancers correlates with the metastases/tissue invasion phenotype. Photolabeling of eIF4E with [gamma-32P]8-azidoguanosine 5'-triphosphate (8-N3GTP) demonstrated cross-linking at Lys-119 in the S4-H2 loop which is distant from the m7GTP binding site [Marcotrigiano et al. (1997) Cell 89, 951-961; Friedland et al. (1997) Protein Sci. 6, 125-131]. Modeling studies indicate that 8-N3GTP cross-linked with Lys-119 because it binds a site that is occupied by the second nucleotide of a bound mRNA. Mutagenesis of the S4-H2 loop produced proteins with a 5-10-fold higher affinity for m7GTP than wild-type eIF4E. These mutants of eIF4E may have uses in selectively purifying mRNAs with intact 5'-ends or in determining how the promyelocytic leukemia protein decreases the affinity of eIF4E for mRNA caps.  相似文献   
564.
We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.  相似文献   
565.
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon  相似文献   
566.

Background

The purpose of this study is to compare the efficacy of prophylactic antibiotic for prevention of meningitis in acute traumatic pneumocephalus patients.

Methods

In this prospective, randomized controlled clinical trial, 200 selected head injury patients with traumatic pneumocephalus are randomly assigned to receive intravenous antibiotics (2 grams Ceftriaxone twice a day), oral antibiotics (Azithromycin) or placebo for at least 7 days after trauma. The patients will be followed for one month posttrauma.

Conclusion

The authors hope that this study helps clarifying the effectiveness and indications of antibiotics in prevention of meningitis in traumatic pneumocephalus after head injury and in specific subgroup of these patients.  相似文献   
567.
568.
Mechanisms of resistance to thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) were investigated in human leukemia cell lines. We developed two 6-MP- and 6-TG-resistant cell lines from the human T-lymphoblastic cell line (MOLT-4) by prolonged exposure to these drugs. The resistant cells were highly cross resistant to 6-MP and 6-TG, and exhibited marked reduction in cellular uptake of 6-MP (70% and 80%, respectively). No significant modification of the activities of hypoxanthine-guanine phosphoribosyl transferase, thiopurine methyltransferase or inosine monophosphate dehydrogenase was observed. Real-time PCR of concentrative nucleoside transporter 3 (CNT3) and equilibrative nucleoside transporter 2 (ENT2) of resistant cells showed substantial reductions in expression of messenger RNAs. Small interfering RNA designed to silence the CNT3 and ENT2 genes down-regulated the expression of these genes in leukemia cells. These decreases were accompanied by reduction of transport of 6-MP (47% and 21%, respectively) as well as its cytocidal effect (30% and 21%, respectively). Taken together these results show that CNT3 and ENT2 play a key role in the transport of 6-MP and 6-TG by leukemia cells. From a clinical point of view determination of CNT3 and ENT2 levels in leukemia cells may be useful in predicting the efficacy of thiopurine treatment.  相似文献   
569.
Chronic hepatitis C virus (HCV) infection is a leading cause of liver disease. Liver inflammation underlies infection-induced fibrosis, cirrhosis and liver cancer but the processes that promote hepatic inflammation by HCV are not defined. We provide a systems biology analysis with multiple lines of evidence to indicate that interleukin-1β (IL-1β) production by intrahepatic macrophages confers liver inflammation through HCV-induced inflammasome signaling. Chronic hepatitis C patients exhibited elevated levels of serum IL-1β compared to healthy controls. Immunohistochemical analysis of healthy control and chronic hepatitis C liver sections revealed that Kupffer cells, resident hepatic macrophages, are the primary cellular source of hepatic IL-1β during HCV infection. Accordingly, we found that both blood monocyte-derived primary human macrophages, and Kupffer cells recovered from normal donor liver, produce IL-1β after HCV exposure. Using the THP-1 macrophage cell-culture model, we found that HCV drives a rapid but transient caspase-1 activation to stimulate IL-1β secretion. HCV can enter macrophages through non-CD81 mediated phagocytic uptake that is independent of productive infection. Viral RNA triggers MyD88-mediated TLR7 signaling to induce IL-1β mRNA expression. HCV uptake concomitantly induces a potassium efflux that activates the NLRP3 inflammasome for IL-1β processing and secretion. RNA sequencing analysis comparing THP1 cells and chronic hepatitis C patient liver demonstrates that viral engagement of the NLRP3 inflammasome stimulates IL-1β production to drive proinflammatory cytokine, chemokine, and immune-regulatory gene expression networks linked with HCV disease severity. These studies identify intrahepatic IL-1β production as a central feature of liver inflammation during HCV infection. Thus, strategies to suppress NLRP3 or IL-1β activity could offer therapeutic actions to reduce hepatic inflammation and mitigate disease.  相似文献   
570.
Limitations of currently available prosthetic valves, xenografts, and homografts have prompted a recent resurgence of developments in the area of tri-leaflet polymer valve prostheses. However, identification of a protocol for initial assessment of polymer valve hydrodynamic functionality is paramount during the early stages of the design process. Traditional in vitro pulse duplicator systems are not configured to accommodate flexible tri-leaflet materials; in addition, assessment of polymer valve functionality needs to be made in a relative context to native and prosthetic heart valves under identical test conditions so that variability in measurements from different instruments can be avoided. Accordingly, we conducted hydrodynamic assessment of i) native (n = 4, mean diameter, D = 20 mm), ii) bi-leaflet mechanical (n= 2, D = 23 mm) and iii) polymer valves (n = 5, D = 22 mm) via the use of a commercially available pulse duplicator system (ViVitro Labs Inc, Victoria, BC) that was modified to accommodate tri-leaflet valve geometries. Tri-leaflet silicone valves developed at the University of Florida comprised the polymer valve group. A mixture in the ratio of 35:65 glycerin to water was used to mimic blood physical properties. Instantaneous flow rate was measured at the interface of the left ventricle and aortic units while pressure was recorded at the ventricular and aortic positions. Bi-leaflet and native valve data from the literature was used to validate flow and pressure readings. The following hydrodynamic metrics were reported: forward flow pressure drop, aortic root mean square forward flow rate, aortic closing, leakage and regurgitant volume, transaortic closing, leakage, and total energy losses. Representative results indicated that hydrodynamic metrics from the three valve groups could be successfully obtained by incorporating a custom-built assembly into a commercially available pulse duplicator system and subsequently, objectively compared to provide insights on functional aspects of polymer valve design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号