首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   48篇
  570篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   15篇
  2014年   13篇
  2013年   19篇
  2012年   29篇
  2011年   22篇
  2010年   9篇
  2009年   13篇
  2008年   13篇
  2007年   17篇
  2006年   21篇
  2005年   17篇
  2004年   20篇
  2003年   15篇
  2002年   17篇
  2001年   17篇
  2000年   19篇
  1999年   19篇
  1998年   4篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   13篇
  1991年   22篇
  1990年   12篇
  1989年   12篇
  1988年   4篇
  1987年   12篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1979年   7篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1973年   4篇
  1968年   5篇
  1963年   3篇
排序方式: 共有570条查询结果,搜索用时 0 毫秒
91.
Escherichia coli expression, processing, and secretion of human interleukin-1 beta (IL-1 beta) fused to the signal peptide of E. coli OmpA or PhoA protein were studied. With fusion to either signal sequence, high-level expression was observed and the products accumulated to about 20% of total cell protein. In the fusion to OmpA leader sequence, more than 50% of the product has the OmpA signal peptide removed precisely. The majority of the processed material is not released by osmotic shock. On the other hand, very little of the material from the fusion to PhoA has the PhoA signal peptide removed. Use of the host with a mutation in prlA or prlF, variation of temperature for cell growth, and alteration of the amino acid residues around the cleavage site do not facilitate processing of the PhoA signal peptide. These results suggest that some component in the PhoA signal peptide, interacting with the Il-1 beta sequence, is interfering with the processing of the signal peptide.  相似文献   
92.
The 3C protease (3C(pro)) from foot-and-mouth disease virus (FMDV), the causative agent of a widespread and economically devastating disease of domestic livestock, is a potential target for antiviral drug design. We have determined the structure of a new crystal form of FMDV 3C(pro), a chymotrypsin-like cysteine protease, which reveals features that are important for catalytic activity. In particular, we show that a surface loop which was disordered in previous structures adopts a beta-ribbon structure that is conformationally similar to equivalent regions on other picornaviral 3C proteases and some serine proteases. This beta-ribbon folds over the peptide binding cleft and clearly contributes to substrate recognition. Replacement of Cys142 at the tip of the beta-ribbon with different amino acids has a significant impact on enzyme activity and shows that higher activity is obtained with more hydrophobic side chains. Comparison of the structure of FMDV 3C(pro) with homologous enzyme-peptide complexes suggests that this correlation arises because the side chain of Cys142 contacts the hydrophobic portions of the P2 and P4 residues in the peptide substrate. Collectively, these findings provide compelling evidence for the role of the beta-ribbon in catalytic activity and provide valuable insights for the design of FMDV 3C(pro) inhibitors.  相似文献   
93.
94.
95.
Fibroblast growth factor receptor 2 (FGFR2) is a crucial regulator of bone formation during embryonic development. Both gain and loss-of-function studies in mice have shown that FGFR2 maintains a critical balance between the proliferation and differentiation of osteoprogenitor cells. We have identified de novo FGFR2 mutations in a sporadically occurring perinatal lethal skeletal dysplasia characterized by poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones. Histological analysis of the long bones revealed that the growth plate contained smaller hypertrophic chondrocytes and a thickened hypercellular periosteum. Four unrelated affected individuals were found to be heterozygous for missense mutations that introduce a polar amino acid into the hydrophobic transmembrane domain of FGFR2. Using diseased chondrocytes and a cell-based assay, we determined that these mutations selectively reduced plasma-membrane levels of FGFR2 and markedly diminished the receptor's responsiveness to extracellular FGF. All together, these clinical and molecular findings are separate from previously characterized FGFR2 disorders and represent a distinct skeletal dysplasia.  相似文献   
96.
97.
98.
99.
A successful method for the purification of NADP isocitrate dehydrogenase from a plant source, Zea mays, is reported. Two mitochondrial isoenzymes were found and purified to homogeneity by a course of acetone fractionation, bulk exchange on DEAE-cellulose, cellulose hydroxylapatite column chromatography, and continuous elution electrophoresis. The mitochondrial isoenzymes are very similar with respect to kinetic properties, response to solvent perturbation, and temperature dependence of the pH/V relationship of isocitrate dehydrogenation. The Michaelis constant for isocitrate is identical for both isoenzymes. The enzymes have a molecular weight of 81,000 as estimated by permeation chromatography and an isoelectric point of 5.5 as extrapolated from gel-electrophoretic mobilities. Detectable differences are confined to differences in electrophoretic mobilities and heat denaturation. In D2O the rate of the overall reaction from isocitrate to α-ketoglutarate and CO2 was about 3.6 times slower than the same reaction in H2O. Both the forward and reverse reactions, in which isocitrate is dehydrogenated or generated from oxalosuccinate, were observed to decrease by this amount in D2O. The decarboxylation of oxalosuccinate was found to decrease by only about 25% in D2O relative to the velocity of the reaction in H2O. Thus the slow step in the overall reaction must be the initial dehydrogenation step rather than the decarboxylation of oxalosuccinate. The pK of the overall reaction did not change in D2O as compared to H2O.  相似文献   
100.
G W Moss  S Curry  N P Franks  W R Lieb 《Biochemistry》1991,30(43):10551-10557
The effects of the homologous series of n-alkane-(alpha, omega)-diols have been studied on the inhibition of the purified firefly luciferase enzyme from Photinus pyralis, the inhibition of the purified bacterial luciferase enzyme from Vibrio harveyi, and the induction of general anesthesia in Xenopus laevis tadpoles. All but one of the diols tested were found to be reversible general anesthetics. The diols inhibited firefly luciferase by competing with its normal substrate firefly luciferin, and they inhibited bacterial luciferase by competing with the substrate n-decanal. For all but the smallest agent (1,4-butanediol), only a single diol molecule was found to be involved in the inhibition of the enzymes. Inhibition constants Ki were determined for the enzymes, and general anesthetic EC50 concentrations were determined for tadpoles. These data were then used in conjunction with previously determined n-alkane and n-alcohol data to calculate, as a function of chain length, the incremental standard Gibbs free energies delta (delta G0) for adding apolar -CH2- groups and for converting apolar terminal -CH3 groups to polar -CH2OH groups. The resulting plots of delta (delta G0) versus chain length gave a consistent mapping of the polarity profiles of the anesthetic-binding pockets. They clearly reveal the existence of two substantial and distinct polar regions in the anesthetic-binding pocket of firefly luciferase but only one such region for bacterial luciferase and for the unknown target sites underlying general anesthesia. The polarities and geometric properties of these different binding sites for straight-chain anesthetics are discussed in terms of simple models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号