首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   117篇
  2021年   7篇
  2019年   8篇
  2018年   8篇
  2017年   10篇
  2016年   13篇
  2015年   16篇
  2014年   24篇
  2013年   30篇
  2012年   27篇
  2011年   34篇
  2010年   22篇
  2009年   16篇
  2008年   22篇
  2007年   30篇
  2006年   20篇
  2005年   20篇
  2004年   27篇
  2003年   22篇
  2002年   18篇
  2001年   23篇
  2000年   21篇
  1999年   13篇
  1998年   17篇
  1997年   13篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   15篇
  1992年   17篇
  1991年   12篇
  1990年   12篇
  1989年   17篇
  1988年   17篇
  1987年   7篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1975年   3篇
  1974年   7篇
  1972年   8篇
  1970年   4篇
  1969年   5篇
  1968年   3篇
  1967年   5篇
  1966年   4篇
  1965年   4篇
  1960年   3篇
  1943年   3篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
31.
A major clinical need exists for cartilage repair and regeneration. Despite many different strategies having been pursued, the identification of an optimised cell type and of pre-treatment conditions remains a challenge. This study compares the cartilage-like tissue generated by human bone marrow stromal cells (HBMSCs) and human neonatal and adult chondrocytes cultured on three-dimensional (3D) scaffolds under various conditions in vitro and in vivo with the aim of informing future cartilage repair strategies based upon tissue-engineering approaches. After 3 weeks in vitro culture, all three cell types showed cartilage-like tissue formation on 3D poly (lactide-co-glycolide) acid scaffolds only when cultured in chondrogenic medium. After 6 weeks of chondro-induction, neonatal chondrocyte constructs revealed the most cartilage-like tissue formation with a prominent superficial zone-like layer, a middle zone-like structure and the thinnest fibrous capsule. HBMSC constructs had the thickest fibrous capsule formation. Under basal culture conditions, neonatal articular chondrocytes failed to form any tissue, whereas HBMSCs and adult chondrocytes showed thick fibrous capsule formation at 6 weeks. After in vivo implantation, all groups generated more compact tissues compared with in vitro constructs. Pre-culturing in chondrogenic media for 1 week before implantation reduced fibrous tissue formation in all cell constructs at week 3. After 6 weeks, only the adult chondrocyte group pre-cultured in chondrogenic media was able to maintain a more chondrogenic/less fibrocartilaginous phenotype. Thus, pre-culture under chondrogenic conditions is required to maintain a long-term chondrogenic phenotype, with adult chondrocytes being a more promising cell source than HBMSCs for articular cartilage tissue engineering.  相似文献   
32.
33.
34.
The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.  相似文献   
35.
Quantitative PCR diagnostic platforms are moving towards increased sample throughput, with instruments capable of carrying out thousands of reactions at once already in use. The need for a computational tool to reliably assist in the validation of the results is therefore compelling. In the present study, 328 residual clinical samples provided by the Public Health England at Addenbrooke''s Hospital (Cambridge, UK) were processed by TaqMan Array Card assay, generating 15 744 reactions from 54 targets. The amplification data were analysed by the conventional cycle-threshold (CT) method and an improvement of the maxRatio (MR) algorithm developed to filter out the reactions with irregular amplification profiles. The reactions were also independently validated by three raters and a consensus was generated from their classification. The inter-rater agreement by Fleiss'' kappa was 0.885; the agreement between either CT or MR with the raters gave Fleiss'' kappa 0.884 and 0.902, respectively. Based on the consensus classification, the CT and MR methods achieved an assay accuracy of 0.979 and 0.987, respectively. These results suggested that the assumption-free MR algorithm was more reliable than the CT method, with clear advantages for the diagnostic settings.  相似文献   
36.
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL‐specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican‐American individuals from extended pedigrees. We found that performance on all three distinct processing‐speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome‐wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10?03).  相似文献   
37.
Land reclamation associated with natural gas development has become increasingly important to mitigate land surface disturbance in western North America. Since well pads occur on sites with multiple land use and ownership, the progress and outcomes of these efforts are of interest to multiple stakeholders including industry, practitioners and consultants, regulatory agents, private landowners, and the scientific community. Reclamation success criteria often vary within, and among, government agencies and across land ownership type. Typically, reclamation success of a well pad is judged by comparing vegetation cover from a single transect on the pad to a single transect in an adjacent reference site and data are collected by a large number of technicians with various field monitoring skills. We utilized “SamplePoint” image analysis software and a spatially balanced sampling design, called balanced acceptance sampling, to demonstrate how spatially explicit quantitative data can be used to determine if sites are meeting various reclamation success criteria and used chi‐square tests to show how sites in vegetation percent cover differ from a statistical standpoint. This method collects field data faster than traditional methods. We demonstrate how quantitative and spatially explicit data can be utilized by multiple stakeholders, how it can improve upon current reference site selection, how it can satisfy reclamation monitoring requirements for multiple regulatory agencies, how it may help improve future seed mix selection, and discuss how it may reduce costs for operations responsible for reclamation and how it may reduce observer bias.  相似文献   
38.
39.
The composition of human scent collected from the hands is of interest to the medical community as a mechanism to diagnose disease and the forensic community as a means to investigate canine scent discriminations. An extensive survey of the volatile organic compounds (VOCs) identified in the headspace of hand odor samples utilizing solid phase micro-extraction gas chromatography/mass spectrometry (SPME-GC/MS) has been conducted to determine the constituents of the human base odor profile. Sixty-three compounds were extracted from the collected odor samples. The composition included acids, alcohols, aldehydes, hydrocarbons, esters, ketones and nitrogen-containing compounds. The majority of the compounds detected (79.4%) were present in less than one third of the individuals sampled. Spearman correlation coefficient comparisons at a match/no-match threshold of 0.9 produced a distinguish ability of 99.67% across the population.  相似文献   
40.
Evolutionarily conserved mechanisms that control aging are predicted to have prereproductive functions in order to be subject to natural selection. Genes that are essential for growth and development are highly conserved in evolution, but their role in longevity has not previously been assessed. We screened 2,700 genes essential for Caenorhabditis elegans development and identified 64 genes that extend lifespan when inactivated postdevelopmentally. These candidate lifespan regulators are highly conserved from yeast to humans. Classification of the candidate lifespan regulators into functional groups identified the expected insulin and metabolic pathways but also revealed enrichment for translation, RNA, and chromatin factors. Many of these essential gene inactivations extend lifespan as much as the strongest known regulators of aging. Early gene inactivations of these essential genes caused growth arrest at larval stages, and some of these arrested animals live much longer than wild-type adults. daf-16 is required for the enhanced survival of arrested larvae, suggesting that the increased longevity is a physiological response to the essential gene inactivation. These results suggest that insulin-signaling pathways play a role in regulation of aging at any stage in life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号