排序方式: 共有69条查询结果,搜索用时 15 毫秒
61.
Arabidopsis IRT2 gene encodes a root-periphery iron transporter 总被引:19,自引:0,他引:19
Iron uptake from the soil is a tightly controlled process in plant roots, involving specialized transporters. One such transporter, IRT1, was identified in Arabidopsis thaliana and shown to function as a broad-range metal ion transporter in yeast. Here we report the cloning and characterization of the IRT2 cDNA, a member of the ZIP family of metal transporters, highly similar to IRT1 at the amino-acid level. IRT2 expression in yeast suppresses the growth defect of iron and zinc transport yeast mutants and enhances iron uptake and accumulation. However, unlike IRT1, IRT2 does not transport manganese or cadmium in yeast. IRT2 expression is detected only in roots of A. thaliana plants, and is upregulated by iron deficiency. By fusing the IRT2 promoter to the uidA reporter gene, we show that the IRT2 promoter is mainly active in the external cell layers of the root subapical zone, and therefore provide the first tissue localization of a plant metal transporter. Altogether, these data support a role for the IRT2 transporter in iron and zinc uptake from the soil in response to iron-limited conditions. 相似文献
62.
Iron utilization and metabolism in plants 总被引:4,自引:0,他引:4
The solubilization and long-distance allocation of iron between organs and tissues, as well as its subcellular compartmentalization and remobilization, involve various chelation and oxidation/reduction steps, transport activities and association with soluble proteins that store and buffer this metal. Maintaining iron homeostasis is an important determinant in building prosthetic groups such as heme and Fe-S clusters, and in assembling them into apoproteins, which are major components of plant metabolism. Such processes require complex protein machineries located in mitochondria and plastids. An essential role for iron metabolism and utilization in plant productivity is evidenced by the strong iron requirement for proper photosynthetic reactions. 相似文献
63.
Kim Geon A Lee Eun Mi Cho Bumrae Alam Zahid Kim Su Jin Lee Sanghoon Oh Hyun Ju Hwang Jong Ik Ahn Curie Lee Byeong Chun 《Transgenic research》2019,28(1):91-102
Transgenic Research - Herein, we successfully generated transgenic pigs expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin (HA)-tagged-human... 相似文献
64.
Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing 总被引:2,自引:0,他引:2
Choi I Cho BR Kim D Miyagawa S Kubo T Kim JY Park CG Hwang WS Lee JS Ahn C 《Journal of biotechnology》2005,120(3):251-261
RNA interference (RNAi) mediated by small interfering RNA (siRNA) has become a popular tool of examining the function of various genes. However, many studies have failed to identify any inhibitory effect of the siRNAs on the expression of the target gene, even though the siRNA being tested had been designed sequence-specifically. In order to determine if this failure is due to the incorrect choice of observation time rather than that of the target site of the gene of interest, this study examined the RNAi efficiency of a vector-driven siRNA targeting two different reporter proteins, EGFP and d2EGFP, whose targeted sequences were identical but the half-lives within the cells differed remarkably from each other (>24h versus 2h), during the time course after transfection. The EGFP expression levels in both cells were reduced in time-dependent manner but the reduction patterns were quite different from each other. The RNAi efficiency varied among the different observation time points and the time required for the maximum RNAi efficiency was proportional to the half-life of the target protein. Stable knocked down cell lines for EGFP expression were then established and the reduced EGFP expression levels in these cell lines were retained for a long period. These results suggest that the choice of an adequate observation time or the establishment of stable knocked down cells by antibiotic selection might be required for making an accurate evaluation of the RNAi effect on the target protein possessing a long half-life. 相似文献
65.
66.
Sol Ji Park Bumrae Cho Ok Jae Koo Hwajung Kim Jung Taek Kang Sunghoon Hurh Su Jin Kim Hye Jung Yeom Joonho Moon Eun Mi Lee Ji Yei Choi Ju Ho Hong Goo Jang Joing-Ik Hwang Jaeseok Yang Byeong Chun Lee Curie Ahn 《Transgenic research》2014,23(3):407-419
Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 105 cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 μg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p < 0.05). Caspase-3/-7 activity of the shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p < 0.05). These results show that shTNFRI-Fc and HA-hHO-1 TG pigs generated by the F2A self-cleaving peptide express both shTNFRI-Fc and HA-hHO-1 molecules, which provides protection against oxidative and inflammatory injury. Utilization of the F2A self-cleaving peptide is a promising tool for generating multiple TG pigs for xenotransplantation. 相似文献
67.
Louis Grillet Laurent Ouerdane Paulina Flis Minh Thi Thanh Hoang Marie-Pierre Isaure Ryszard Lobinski Catherine Curie Stéphane Mari 《The Journal of biological chemistry》2014,289(5):2515-2525
Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. 相似文献
68.