全文获取类型
收费全文 | 219篇 |
免费 | 8篇 |
专业分类
227篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 6篇 |
2015年 | 3篇 |
2014年 | 8篇 |
2013年 | 13篇 |
2012年 | 12篇 |
2011年 | 12篇 |
2010年 | 9篇 |
2009年 | 9篇 |
2008年 | 19篇 |
2007年 | 17篇 |
2006年 | 14篇 |
2005年 | 12篇 |
2004年 | 8篇 |
2003年 | 12篇 |
2002年 | 9篇 |
2001年 | 7篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有227条查询结果,搜索用时 15 毫秒
51.
E Rebelato TR Mares-Guia MF Graciano L Labriola LR Britto HM Garay-Malpartida R Curi MC Sogayar AR Carpinelli 《Life sciences》2012,91(7-8):244-249
AIMS: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human β-cell function were investigated. MAIN METHODS AND KEY FINDINGS: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)). Immunohistochemistry experiments showed co-localization of p47(PHOX), p67(PHOX) and gp91(PHOX) (isoform 2 of NADPH oxidase-NOX2) with insulin secreting cells. Inhibition of NADPH oxidase activity impaired glucose metabolism and glucose-stimulated insulin secretion. SIGNIFICANCE: These findings demonstrate the presence of the main intrinsic components of NADPH oxidase comprising the NOX2 isoform in human pancreatic islets, whose activity also contributes to human β-cell function. 相似文献
52.
Macrophages are able to produce, export, and transfer fatty acids to lymphocytes in culture. The purpose of this study was to examine if labelled fatty acids could be transferred from macrophages to pancreatic islets in co-culture. We found that after 3 h of co-culture the transfer of fatty acids to pancreatic islets was: arachidonic > oleic > linoleic = palmitic. Substantial amounts of the transferred fatty acids were found in the phospholipid fraction; 87.6% for arachidonic, 59.9% for oleic, 53.1% for palmitic, and 36.9% for linoleic acids. The remaining radioactivity was distributed among the other lipid fractions analysed (namely polar lipids, cholesterol, fatty acids, triacylglycerol and cholesterol ester), varying with the fatty acid used. For linoleic acid, a significant proportion (63.1%) was almost equally distributed in these lipid fractions. Also, it was observed that transfer of fatty acids from macrophages to pancreatic islets is time-dependent up to 24 h, being constant and linear with time for palmitic acid and remaining constant after 12 h for oleic acid. These results lead us to postulate that in addition to the serum, circulating monocytes may also be a source of fatty acids to pancreatic islets, mainly arachidonic acid. 相似文献
53.
The effect of thyroid hormones on monocyte migration, phagocytic capacity and hydrogen peroxide production by macrophages and the effect of these hormones on glutamine and glucose metabolism was investigated. The experiments were performed on resident, thioglycollate- and BCG-stimulated cells from hypo- and hyperthyroid rats. High plasma levels of thyroid hormones suppressed the migration of monocytes and hydrogen peroxide production, whereas hypothyuroidism did not affect cell migration but rasied the phagocytic capacity and the hydrogen peroxide production. Hyperthyroidism increased the activities of glutaminase and hexokinase and the rates of decarboxylation of [U-14C]-glutamine and [U-14C]-glucose in inflammatory and activated cells. Hypothyroidism stimulated glucose metabolism and had only a slight effect on glutaminolysis. The activity of the TCA cycle was, however, diminished in the presence of high plasma levels of thyroid hormones and enhanced by the hypothyroid state. These findings suggest that the functional changes observed are more likely to be related to the activity of the TCA cycle rather than to glutaminolysis and glycolysis. 相似文献
54.
Despite the importance of endothelial cells little is known about their metabolic fuel requirements. To provide some information in this area, the maximum catalytic activities of key enzymes of important metabolic pathways have been measured in bovine pulmonary endothelial cells. The results suggest that both glucose and glutamine are important fuels for these cells: in addition, the oxidation of fatty acids may also be of quantitative significance. The activity of glutaminase in these cells was about 20-fold higher than that in lymphocyte, a cell which exhibits high rates of glutaminolysis. It is suggested that a high rate of glutamine metabolism by endothelial cells is important not only for energy provision but also for provision of nitrogen for biosynthetic purposes including production of local messengers. 相似文献
55.
Germinal centres (GCs) are specialised lymphoid microenvironments that form in secondary B-cell follicles upon exposure to T-dependent antigens. In the GC, clonal expansion, selection and differentiation of GC B cells result in the production of high-affinity plasma cells and memory B cells that provide protection against subsequent infection. The GC is carefully regulated to fulfil its critical role in defence against infection and to ensure that immunological tolerance is not broken in the process. The GC response can be controlled by a number of mechanisms, one of which is by forkhead box p3 expressing regulatory T (Treg) cells, a suppressive population of CD4+ T cells. A specialised subset of Treg cells – follicular regulatory T (Tfr) cells – form after immunisation and are able to access the GC, where they control the size and output of the response. Our knowledge of Treg cell control of the GC is expanding. In this review we will discuss recent advances in the field, with a particular emphasis on the differentiation and function of Tfr cells in the GC. 相似文献
56.
Pleiotropic effects of fatty acids on pancreatic beta-cells 总被引:10,自引:0,他引:10
57.
58.
Arachidonic acid is a polyunsaturated fatty acid that mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. However, arachidonic acid is found to be cytotoxic in vitro at concentrations that overlap physiological ones. It is tempting therefore to speculate that arachidonic acid may be a physiological inducer of apoptosis and that such cytotoxic action may be another of its roles in vivo. Nevertheless its pro-inflammatory and oxidative stress-inducing features are characteristic of necrosis and pathological conditions. We hereby review the cytotoxic action of arachidonic acid, indicate the possible pathways that lead to cell death and contemplate the cytotoxic role of arachidonic acid in vivo. 相似文献
59.
Tania C. Pithon Curi Mariza Pires De Melo Adrianne C. Palanch Celio K. Miyasaka Rui Curi 《Cell biochemistry and function》1998,16(1):43-49
Changes in the integrity, ultrastructure, phagocytosis capacity, and production of H2O2, O2· −and NO2− were evaluated in cultured neutrophils. The activities of the antioxidant enzymes (catalase—CAT, superoxide dismutase—SOD and glutathione-dependent peroxidase—GSH-Px) were measured under similar conditions. The integrity of the cells remained unchanged up to 18 h. After 24 h, the number of viable cells in culture dropped by 16 per cent. The percentage of viable cells in culture was of 72 per cent even after 72 h. An ultrastructural analysis of the cells was carried out after 3, 6, 12, 24, 48, and 72 h in culture. Neutrophils started developing morphologic changes after 24 h: decreased cell volume, abundant vacuoles (mainly around the nucleus), and also the presence of autophagic vacuoles. This period was then chosen for the study of neutrophil function and antioxidant enzyme activities. Neutrophils cultured for 24 h presented reduced phagocytosis capacity. The rates of production of H2O2 and O2· − remained unchanged after 24 h in culture. Concomitantly, these cells were also able to produce NO in significant amounts. The production of O2·− in response to PMA stimulus was lowered in 24-h cultured cells. Possibly, the production of oxygen and nitrogen reactive species accomplished with a decrease in the activities of CAT and GSH-Px play a key role for the process of apoptosis which takes place in neutrophils under these conditions. © 1998 John Wiley & Sons, Ltd. 相似文献
60.
Molecular mechanisms of glutamine action 总被引:13,自引:0,他引:13
Curi R Lagranha CJ Doi SQ Sellitti DF Procopio J Pithon-Curi TC Corless M Newsholme P 《Journal of cellular physiology》2005,204(2):392-401
Glutamine is the most abundant free amino acid in the body and is known to play a regulatory role in several cell specific processes including metabolism (e.g., oxidative fuel, gluconeogenic precursor, and lipogenic precursor), cell integrity (apoptosis, cell proliferation), protein synthesis, and degradation, contractile protein mass, redox potential, respiratory burst, insulin resistance, insulin secretion, and extracellular matrix (ECM) synthesis. Glutamine has been shown to regulate the expression of many genes related to metabolism, signal transduction, cell defense and repair, and to activate intracellular signaling pathways. Thus, the function of glutamine goes beyond that of a simple metabolic fuel or protein precursor as previously assumed. In this review, we have attempted to identify some of the common mechanisms underlying the regulation of glutamine dependent cellular functions. 相似文献