首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   13篇
  2023年   8篇
  2022年   4篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2016年   11篇
  2015年   20篇
  2014年   9篇
  2013年   21篇
  2012年   20篇
  2011年   23篇
  2010年   10篇
  2009年   8篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
111.
Plant Cell, Tissue and Organ Culture (PCTOC) - One of the common problems in strawberry (Fragaria?×?ananassa) micropropagation is the vitrification phenomenon (succulent plantlets,...  相似文献   
112.
Plant Cell, Tissue and Organ Culture (PCTOC) - Effects of silver nanoparticles (AgNPs) on somatic embryogenesis and plantlets with rhizome of Panax vietnamensis were presented in this study. The...  相似文献   
113.
114.
Nitrogen is an essential nutrient for plant growth. In the Rhizobium-legume symbiosis, root nodules are the sites of bacterial nitrogen fixation, in which atmospheric nitrogen is converted into a form that plants can utilize. While recent studies suggested an important role for the soybean (Glycine max) ecto-apyrase GS52 in rhizobial root hair infection and root nodule formation, precisely how this protein impacts the nodulation process remains undetermined. In this study, the biochemical characteristics of the GS52 enzyme were investigated. Computer modeling of the GS52 apyrase structure identified key amino acid residues important for catalytic activity, which were subsequently mutagenized. Although the GS52 enzyme exhibited broad substrate specificity, its activity on pyrimidine nucleotides and diphosphate nucleotides was significantly higher than on ATP. This result was corroborated by structural modeling of GS52, which predicted a low specificity for the adenine base within the substrate-binding pocket of the enzyme. The wild-type enzyme and its inactive mutant forms were expressed in soybean roots in order to evaluate the importance of GS52 enzymatic activity for nodulation. The results indicated a clear correlation between GS52 enzymatic activity and nodule number. Altogether, our study indicates that the catalytic activity of the GS52 apyrase, likely acting on extracellular nucleotides, is critical for rhizobial infection and nodulation.  相似文献   
115.
The recognition of single-stranded RNA (ssRNA) is an important aspect of gene regulation, and a number of different classes of protein domains that recognize ssRNA in a sequence-specific manner have been identified. Recently, we demonstrated that the RanBP2-type zinc finger (ZnF) domains from the human splicing factor ZnF Ran binding domain-containing protein 2 (ZRANB2) can bind to a sequence containing the consensus AGGUAA. Six other human proteins, namely, Ewing's sarcoma (EWS), translocated in liposarcoma (TLS)/FUS, RNA-binding protein 56 (RBP56), RNA-binding motif 5 (RBM5), RNA-binding motif 10 (RBM10) and testis-expressed sequence 13A (TEX13A), each contains a single ZnF with homology to the ZRANB2 ZnFs, and several of these proteins have been implicated in the regulation of mRNA processing. Here, we show that all of these ZnFs are able to bind with micromolar affinities to ssRNA containing a GGU motif. NMR titration data reveal that binding is mediated by the corresponding surfaces on each ZnF, and we also show that sequence selectivity is largely limited to the GGU core motif and that substitution of the three flanking adenines that were selected in our original selection experiment has a minimal effect on binding affinity. These data establish a subset of RanBP2-type ZnFs as a new family of ssRNA-binding motifs.  相似文献   
116.
Two new diterpenes, lobocompactols A (1) and B (2), and five known compounds (3-7) were isolated from the methanol extract of the soft coral Lobophytum compactum using combined chromatographic methods and identified based on NMR and MS data. Each compound was evaluated for cytotoxic activity against A549 (lung) and HL-60 (acute promyelocytic leukemia) human cancer cell lines. Among them, compound 5 exhibited strong cytotoxic activity against the A549 cell line with an IC50 of 4.97 ± 0.06 μM. Compounds 3, 4, and 7 showed moderate activity with IC50 values of 23.03 ± 0.76, 31.13 ± 0.08, and 36.45 ± 0.01 μM, respectively. The cytotoxicity of 5 on the A549 cells was comparable to that of the positive control, mitoxantrone (MX). All compounds exhibited moderate cytotoxicity against the HL-60 cell line, with IC50 values ranging from 17.80 ± 1.43 to 59.06 ± 2.31 μM. Their antioxidant activity was also measured using oxygen radical absorbance capacity method, compounds 1 and 2 exhibiting moderate peroxyl radical scavenging activity of 1.4 and 1.3 μM Trolox equivalents, respectively, at a concentration of 5 μM.  相似文献   
117.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.  相似文献   
118.
119.

Setting

Existing tuberculosis control strategies in Vietnam are based on symptomatic patients attending health services for investigation. This approach has not resulted in substantial reductions in the prevalence of tuberculosis disease, despite the National Tuberculosis Program achieving high treatment completion rates. Alternative approaches are being considered.

Objective

To determine the feasibility and yield of contact investigation in households of patients with smear positive pulmonary tuberculosis among household members of tuberculosis patients in Hanoi, Vietnam.

Methods

Household contacts of patients with smear positive pulmonary tuberculosis were recruited at four urban and rural District Tuberculosis Units in Hanoi. Clinical and radiological screening was conducted at baseline, six months and 12 months. Sputum microscopy and culture was performed in contacts suspected of having tuberculosis. MIRU-VNTR molecular testing was used to compare the strains of patients and their contacts with disease.

Results

Among 545 household contacts of 212 patients, four were diagnosed with tuberculosis at baseline (prevalence 734 cases per 100,000 persons, 95% CI 17–1451) and one was diagnosed with tuberculosis during the subsequent 12 months after initial screening (incidence 180 cases per 100,000 person-years, 95% CI 44–131). Two of these cases were culture positive for M. tuberculosis and both had identical or near-identical MIRU-VNTR strain types.

Conclusion

Household contacts of patients with potentially infectious forms of tuberculosis have a high prevalence of disease. Household contact investigation is feasible in Vietnam. Further research is required to investigate its effectiveness.  相似文献   
120.
Malabaricone C (Mal-C), isolated from nutmeg, is known to exert a variety of pharmacological activities. However, the effect of Mal-C on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of Mal-C on proliferation and migration of primary rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Treatment of RASMCs with Mal-C induced both protein and mRNA expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Mal-C-mediated HO-1 induction was inhibited by treatment with actinomycin D or by cycloheximide. SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor), U0126 (a MEK inhibitor), and N-acetylcysteine (NAC, an antioxidant) did not suppress Mal-C-induced HO-1 expression. In contrast, LY294002 (a PI3K inhibitor) blocked Mal-C-induced HO-1 expression. Moreover, RASMCs treated with Mal-C exhibited activation of AKT in a dose- and time-dependent manner. Treatment of RASMCs with Mal-C increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2), which is a key regulator of HO-1 expression, and this translocation was also inhibited by LY294002. Consistent with the notion that HO-1 has protective effects against VSMCs, Mal-C remarkably inhibited platelet-derived growth factor (PDGF)-induced proliferation and migration of RASMCs. However, inhibition of HO-1 significantly attenuated the inhibitory effects of Mal-C on PDGF-induced proliferation and migration of RASMCs. Taken together, these findings suggest that Mal-C could suppress PDGF-induced proliferation and migration of RASMCs through Nrf2 activation and subsequent HO-1 induction via the PI3K/AKT pathway, and may be a potential HO-1 inducer for preventing or treating vascular diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号