首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583篇
  免费   89篇
  1672篇
  2024年   3篇
  2023年   16篇
  2022年   32篇
  2021年   38篇
  2020年   38篇
  2019年   43篇
  2018年   54篇
  2017年   52篇
  2016年   63篇
  2015年   83篇
  2014年   95篇
  2013年   123篇
  2012年   135篇
  2011年   135篇
  2010年   51篇
  2009年   47篇
  2008年   75篇
  2007年   73篇
  2006年   61篇
  2005年   57篇
  2004年   56篇
  2003年   51篇
  2002年   45篇
  2001年   37篇
  2000年   25篇
  1999年   15篇
  1998年   12篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   11篇
  1988年   11篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1979年   4篇
  1978年   3篇
  1976年   4篇
  1974年   4篇
  1971年   3篇
  1970年   3篇
  1968年   3篇
  1933年   3篇
  1931年   2篇
排序方式: 共有1672条查询结果,搜索用时 10 毫秒
11.
 Theoretical studies of protein-protein association and electron transfer were performed on the binary systems formed by Desulfovibrio vulgaris Hildenborough (D. v. H.) flavodoxin and D. v. H. cytochrome c 553 and by flavodoxin and horse heart cytochrome c. Initial structures for the complexes were obtained by rigid-body docking and were refined by MD to allow for molecular flexibility. The structures thus obtained were analysed in terms of their relative stability through the calculation of excess energies. Electrostatic, van der Waals and solvation energy terms showed all to have significant contributions to the stability of complexes. In the best association solutions found for both cytochromes, these bind to different zones of flavodoxin. The binding site of flavodoxin observed for cytochrome c is in accordance with earlier works [27]. The various association modes found were characterised in terms of electron transfer using the Pathways model. For complexes between flavodoxin and horse heart cytochrome c, some correlation was observed between electron tunnelling coupling factors and conformation energy; the best conformation found for electron transfer corresponded also to the best one in terms of energy. For complexes between flavodoxin and cytochrome c 553 this was not the case and a lower correlation was observed between electron tunnelling coupling factors and excess energies. These results are in accordance with the differences in the experimental dependence of electron transfer rates with ionic strength observed between these two cases. Received: 29 December 1998 / Accepted: 22 March 1999  相似文献   
12.
Tuberous sclerosis complex (TSC) is an autosomal dominant cancer predisposition disorder caused by heterozygous mutations in TSC1 or TSC2 genes and characterized by mTORC1 hyperactivation. TSC-associated tumors develop after loss of heterozygosity mutations and their treatment involves the use of mTORC1 inhibitors. We aimed to evaluate cellular processes regulated by mTORC1 in TSC cells with different mutations before tumor development. Flow cytometry analyses were performed to evaluate cell viability, cell cycle and autophagy in non-tumor primary TSC cells with different heterozygous mutations and in control cells without TSC mutations, before and after treatment with rapamycin (mTORC1 inhibitor). We did not observe differences in cell viability and cell cycle between the cell groups. However, autophagy was reduced in mutated cells. After rapamycin treatment, mutated cells showed a significant increase in the autophagy process (p=0.039). We did not observe differences between cells with distinct TSC mutations. Our main finding is the alteration of autophagy in non-tumor TSC cells. Previous studies in literature found autophagy alterations in tumor TSC cells or knock-out animal models. We showed that autophagy could be an important mechanism that leads to TSC tumor formation in the haploinsufficiency state. This result could guide future studies in this field.  相似文献   
13.
Insulin is a 6 kDa peptide hormone that activates several metabolic processes and cellular growth. Germination studies showed that insulin, vanadyl sulphate (an insulin mimetic compound), tyrphostin (an inhibitor of insulin receptor kinase activity), pinitol (a chiro inositol analogue) and glucose were able to accelerate Canavalia ensiformis (Jack bean) seedling radicle and epicotyl development. Immunofluorescence microscopy analysis showed that proteins binding to insulin, insulin receptor and phosphoserine antibodies are localized in an internal layer of the C. ensiformis seed coat. These results and others previously reported from our laboratory suggest that insulin, insulin receptor and phosphoserine proteins could be components of signalling pathways akin to those present in animals.  相似文献   
14.
Essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemon were tested for their antimicrobial activities against some plant pathogenic micro-organisms (Fusarium oxysporum, Alternaria alternate, Penicilium italicum Penicilium digitatum and Botyritus cinerea). Essential oils of fennel, peppermint, caraway were selected as an active ingredient for the formulation of biocides due to their efficiency in controlling the tested micro-organisms. Successful emulsifiable concentrates (biocides) were prepared from these oils using different emulsifiers (Emulgator B.L.M. Tween20 and Tween80) and different fixed oils (sesame, olive, cotton and soybean oils). Physico-chemical properties of the formulated biocide (spontaneous emulsification, emulsion stability test, cold stability and heat stability tests as well as viscosity, surface tension and pH) were measured. The prepared biocides were ready to be tested for application in a future work as a safe pesticide against different pathogens.  相似文献   
15.
16.
Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes. To identify candidate effector genes (virulence or avirulence genes) that may have co-evolved with the host, we mined expressed sequence tag (EST) data from infection stages of P. infestans for secreted and potentially polymorphic genes. This led to the identification of scr74, a gene that encodes a predicted 74-amino acid secreted cysteine-rich protein with similarity to the Phytophthora cactorum phytotoxin PcF. The expression of scr74 was upregulated approximately 60-fold 2 to 4 days after inoculation of tomato and was also significantly induced during early stages of colonization of potato. The scr74 gene was found to belong to a highly polymorphic gene family within P. infestans with 21 different sequences identified. Using the approximate and maximum likelihood (ML) methods, we found that diversifying selection likely caused the extensive polymorphism observed within the scr74 gene family. Pairwise comparisons of 17 scr74 sequences revealed elevated ratios of nonsynonymous to synonymous nucleotide-substitution rates, particularly in the mature region of the proteins. Using ML, all 21 polymorphic amino acid sites were identified to be under diversifying selection. Of these 21 amino acids, 19 are located in the mature protein region, suggesting that selection may have acted on the functional portions of the proteins. Further investigation of gene copy number and organization revealed that the scr74 gene family comprises at least three copies located in a region of no more than 300 kb of the P. infestans genome. We found evidence that recombination contributed to sequence divergence within at least one gene locus. These results led us to propose an evolutionary model that involves gene duplication and recombination, followed by functional divergence of scr74 genes. This study provides support for using diversifying selection as a criterion for identifying candidate effector genes from sequence databases.  相似文献   
17.
18.
We describe structure-based optimization of a series of novel 2,4-diaminopyrimidine MK2 inhibitors. Co-crystal structures (see accompanying Letter) demonstrated a unique inhibitor binding mode. Resulting inhibitors had IC50 values as low as 19 nM and moderate selectivity against a kinase panel. Compounds 15, 31a, and 31b inhibit TNFα production in peripheral human monocytes.  相似文献   
19.
The CRISPR/Cas9 system has been used for genome editing in several organisms, including higher plants. This system induces site-specific mutations in the genome based on the nucleotide sequence of engineered guide RNAs. The complex genomes of C4 grasses makes genome editing a challenge in key grass crops like maize (Zea mays), sorghum (Sorghum bicolor), Brachiaria spp., switchgrass (Panicum virgatum), and sugarcane (Saccharum spp.). Setaria viridis is a diploid C4 grass widely used as a model for these C4 crop plants. Here, an optimized CRISPR/Cas9 binary vector that exploits the non-homologous end joining (NHEJ) system was used to knockout a green fluorescent protein (gfp) transgene in S. viridis accession A10.1. Transformation of embryogenic callus by A. tumefaciens generated ten glufosinate-ammonium resistant transgenic events. In the T0 generation, 60% of the events were biallelic mutants in the gfp transgene with no detectable accumulation of GFP protein and without insertions or deletions in predicted off-target sites. The gfp mutations generated by CRISPR/Cas9 were stable and displayed Mendelian segregation in the T1 generation. Altogether, the system described here is a highly efficient genome editing system for S. viridis, an important model plant for functional genomics studies in C4 grasses. Also, this system is a potential tool for improvement of agronomic traits in C4 crop plants with complex genomes.  相似文献   
20.
Changes in the concentration of sugars and sucrose metabolism enzymes can characterize the developmental stages of a seed. In recalcitrant species such as Hevea brasiliensis L., little is known about these changes. We aimed to evaluate the three main stages of development of rubber tree seeds – histodifferentiation, cell elongation and accumulation of reserves. The activities of acid and neutral invertases (E.C. 3.2.1.26) and sucrose synthase (EC 2.4.1.13), and the concentrations of reducing sugars (RS), total soluble sugars (TSS) and sucrose (Suc) were determined concomitantly with the histochemical and anatomical evaluation of seed structure. Histodifferentiation in rubber tree seeds occurs up to 75 days after anthesis (DAA). The concentration of RS is high and of Suc is low during seed histodifferentiation, which occurs along with a visible increase in the number of cell divisions. After that period, there is an increase in the concentration of Suc (mg g?1) and in the number and size of starch granules, and a decrease in the concentration of RS (mg g?1). At that point, cell elongation occurs. At 135 DAA, there is an inversion in the concentration of these two sugars and an increase in reserve accumulation. Thus, in seeds of the evaluated clone, the period up to 75 DAA is characterized as the histodifferentiation stage, while from that time up to 120 DAA the cell elongation stage takes place. The final stage of seed maturation and reserve accumulation begins at 135 DAA, and the seed, including the embryo, is completely formed at 175 DAA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号