It is desirable to obtain TR antagonists for treatment of hyperthyroidism and other conditions. We have designed TR antagonists from first principles based on TR crystal structures. Since agonist ligands are buried in the fold of the TR ligand binding domain (LBD), we reasoned that ligands that resemble agonists with large extensions should bind the LBD, but would prevent its folding into an active conformation. In particular, we predicted that extensions at the 5′ aryl position of ligand should reposition helix (H) 12, which forms part of the co-activator binding surface, and thereby inhibit TR activity. We have found that some synthetic ligands with 5′ aryl ring extensions behave as antagonists (DIBRT, NH-3), or partial antagonists (GC-14, NH-4). Moreover, one compound (NH-3) represents the first potent TR antagonist with nanomolar affinity that also inhibits TR action in an animal model. However, the properties of the ligands also reveal unexpected aspects of TR behavior. While nuclear receptor antagonists generally promote binding of co-repressors, NH-3 blocks co-activator binding and also prevents co-repressor binding. More surprisingly, many compounds with extensions behave as full or partial agonists. We present hypotheses to explain both behaviors in terms of dynamic equilibrium of H12 position. 相似文献
Reactivity of snails against parasites exhibits a primitive focal reaction, with encapsulation, phagocytosis and destruction of parasite larvae by macrophage-like cells - the hemocytes. This reaction mimics granulomatous inflammation seen in higher animals. However, different from the latter, little is known about the participation of extra-cellular matrix in such snail defense reactions. Normal and Schistosoma mansoni-infected Biomphalaria glabrata of different strains were submitted to cytological, histological, ultrastructural and biochemical methods in order to investigate the behavior of extra-cellular tissues at the site of anti-parasite reactions. In spite of the presence of two cell-types in peripheral hemolymph, only one cell-type was present at the sites of tissue reactions. Although pre-existent collagen and elastic fibers and microfibrils sometimes appeared slightly compressed around focal reactions, no evidences of duplication, synthesis or deposition of connective-tissue extra-cellular components were observed within or around the zones of reactive cell accumulations. Thus, tissue reactions against S. mansoni in the snail B. glabrata appeared exclusively dependent on one specific population of hemocytes. 相似文献
To assess the reliability and validity concerning the formal European Portuguese version of the Pittsburgh Sleep Quality Index [PSQI (EP)], its accuracy, and optimal cut-off point. N = 564 volunteers (18–80 years old) recruited in several settings (e.g., university campuses; work place; home; sleep consultations), agreed to complete the PSQI (EP). Subgroups completed additional measures: Insomnia Severity Index (ISI), STOP-Bang, Glasgow Sleep Effort Scale, or responded to a supplementary question about perceived sleep problems. As to internal consistency, Cronbach’s α = 0.75. Principal component analysis revealed a unidimensional structure. Six PSQI (EP) components and total scores were able to discriminate individuals who did versus did not describe having any sleep problem; all PSQI (EP) scores were significantly higher (denoting poorer quality) in participants suffering from a sleep disorder. Most Cohen’s d values showed large magnitude associations. PSQI (EP) and ISI scores were highly correlated, but no significant correlations were found considering STOP-Bang. ROC analysis confirmed an optimal cut-off point > 5 of the PSQI (EP) to detect self-reported poor/good sleepers in non-clinical settings. To discriminate non-clinical from clinical sleep patients, the optimal cutoff was > 7, and AUC = 0.94. The European Portuguese version of the PSQI performs as a reliable, valid, and accurate measure of overall sleep quality in Portuguese participants. Furthermore, results suggest that PSQI (EP) can discriminate poor sleepers in non-clinical settings, in addition to demonstrating high clinical accuracy in signaling potential sleep-disorder cases. In conclusion, the PSQI (EP) is a suitable tool to assess general sleep quality in Portuguese participants, both for clinical or non-clinical applications.
Adenosine and dopamine are two important modulators of glutamatergic neurotransmission in the striatum. However, conflicting reports exist about the role of adenosine and adenosine receptors in the modulation of striatal dopamine release. It has been previously suggested that adenosine A(1) receptors localized in glutamatergic nerve terminals indirectly modulate dopamine release, by their ability to modulate glutamate release. In the present study, using in vivo microdialysis, we provide evidence for the existence of a significant glutamate-independent tonic modulation of dopamine release in most of the analyzed striatal compartments. In the dorsal, but not in the ventral, part of the shell of the nucleus accumbens (NAc), blockade of A(1) receptors by local perfusion with the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine or by systemic administration of the non-selective adenosine antagonist caffeine induced a glutamate-dependent release of dopamine. On the contrary, A(1) receptor blockade induced a glutamate-independent dopamine release in the core of the NAc and the nucleus caudate-putamen. Furthermore, using immunocytochemical and functional studies in rat striatal synaptosomes, we demonstrate that a fraction of striatal dopaminergic terminals contains adenosine A(1) receptors, which directly inhibit dopamine release independently of glutamatergic transmission. 相似文献
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia. 相似文献
Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water‐stressed plants is scarcely addressed.
This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration.
Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD).
Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought.
Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. 相似文献
The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented. 相似文献
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae. 相似文献