全文获取类型
收费全文 | 41540篇 |
免费 | 16531篇 |
国内免费 | 1368篇 |
专业分类
59439篇 |
出版年
2024年 | 46篇 |
2023年 | 249篇 |
2022年 | 563篇 |
2021年 | 1172篇 |
2020年 | 2721篇 |
2019年 | 4322篇 |
2018年 | 4403篇 |
2017年 | 4511篇 |
2016年 | 4689篇 |
2015年 | 4969篇 |
2014年 | 4839篇 |
2013年 | 5306篇 |
2012年 | 3226篇 |
2011年 | 2792篇 |
2010年 | 3863篇 |
2009年 | 2464篇 |
2008年 | 1466篇 |
2007年 | 985篇 |
2006年 | 951篇 |
2005年 | 868篇 |
2004年 | 758篇 |
2003年 | 789篇 |
2002年 | 670篇 |
2001年 | 524篇 |
2000年 | 425篇 |
1999年 | 362篇 |
1998年 | 165篇 |
1997年 | 125篇 |
1996年 | 128篇 |
1995年 | 125篇 |
1994年 | 114篇 |
1993年 | 74篇 |
1992年 | 101篇 |
1991年 | 91篇 |
1990年 | 76篇 |
1989年 | 60篇 |
1988年 | 48篇 |
1987年 | 56篇 |
1986年 | 56篇 |
1985年 | 51篇 |
1984年 | 30篇 |
1983年 | 19篇 |
1982年 | 23篇 |
1981年 | 14篇 |
1980年 | 13篇 |
1979年 | 16篇 |
1976年 | 10篇 |
1973年 | 15篇 |
1971年 | 9篇 |
1970年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
91.
92.
A Durable Alternative for Proton‐Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s
Dan Zhao Jinhuan Li Min‐Kyu Song Baolian Yi Huamin Zhang Meilin Liu 《Liver Transplantation》2011,1(2):203-211
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications. 相似文献
93.
94.
Thomas P. Brennan Pendar Ardalan Han‐Bo‐Ram Lee Jonathan R. Bakke I‐Kang Ding Michael D. McGehee Stacey F. Bent 《Liver Transplantation》2011,1(6):1169-1175
Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO2, we are able to grow QDs of adjustable size which act as sensitizers for solid‐state QD‐sensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1‐10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'‐tetrakis‐(N,N‐di‐p methoxyphenylamine) 9,9'‐spirobifluorene (spiro‐OMeTAD) as the solid‐state hole conductor. The ALD approach described here can be applied to fabrication of quantum‐confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. 相似文献
95.
96.
PerR-Regulated Manganese Ion Uptake Contributes to Oxidative Stress Defense in an Oral Streptococcus
Metal homeostasis plays a critical role in antioxidative stress. Streptococcus oligofermentans, an oral commensal facultative anaerobe lacking catalase activity, produces and tolerates abundant H2O2, whereas Dpr (an Fe2+-chelating protein)-dependent H2O2 protection does not confer such high tolerance. Here, we report that inactivation of perR, a peroxide-responsive repressor that regulates zinc and iron homeostasis in Gram-positive bacteria, increased the survival of H2O2-pulsed S. oligofermentans 32-fold and elevated cellular manganese 4.5-fold. perR complementation recovered the wild-type phenotype. When grown in 0.1 to 0.25 mM MnCl2, S. oligofermentans increased survival after H2O2 stress 2.5- to 23-fold, and even greater survival was found for the perR mutant, indicating that PerR is involved in Mn2+-mediated H2O2 resistance in S. oligofermentans. Mutation of mntA could not be obtained in brain heart infusion (BHI) broth (containing ∼0.4 μM Mn2+) unless it was supplemented with ≥2.5 μM MnCl2 and caused 82 to 95% reduction of the cellular Mn2+ level, while mntABC overexpression increased cellular Mn2+ 2.1- to 4.5-fold. Thus, MntABC was identified as a high-affinity Mn2+ transporter in S. oligofermentans. mntA mutation reduced the survival of H2O2-pulsed S. oligofermentans 5.7-fold, while mntABC overexpression enhanced H2O2-challenged survival 12-fold, indicating that MntABC-mediated Mn2+ uptake is pivotal to antioxidative stress in S. oligofermentans. perR mutation or H2O2 pulsing upregulated mntABC, while H2O2-induced upregulation diminished in the perR mutant. This suggests that perR represses mntABC expression but H2O2 can release the suppression. In conclusion, this work demonstrates that PerR regulates manganese homeostasis in S. oligofermentans, which is critical to H2O2 stress defenses and may be distributed across all oral streptococci lacking catalase. 相似文献
97.
Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells (Adv. Energy Mater. 1/2016) 下载免费PDF全文
98.
Jung YY Oh MS Shin DW Kang SH Oh HS 《Biometrical journal. Biometrische Zeitschrift》2006,48(3):435-450
A Bayesian model-based clustering approach is proposed for identifying differentially expressed genes in meta-analysis. A Bayesian hierarchical model is used as a scientific tool for combining information from different studies, and a mixture prior is used to separate differentially expressed genes from non-differentially expressed genes. Posterior estimation of the parameters and missing observations are done by using a simple Markov chain Monte Carlo method. From the estimated mixture model, useful measure of significance of a test such as the Bayesian false discovery rate (FDR), the local FDR (Efron et al., 2001), and the integration-driven discovery rate (IDR; Choi et al., 2003) can be easily computed. The model-based approach is also compared with commonly used permutation methods, and it is shown that the model-based approach is superior to the permutation methods when there are excessive under-expressed genes compared to over-expressed genes or vice versa. The proposed method is applied to four publicly available prostate cancer gene expression data sets and simulated data sets. 相似文献
99.
Zhenwen Cui Zhihong Zhong Yong Yang Baofeng Wang Yuhao Sun Qingfang Sun Guo‐yuan Yang Liuguan Bian 《Journal of biochemical and molecular toxicology》2016,30(8):396-403
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity. 相似文献
100.
Kim SH Shin DH Choi IG Schulze-Gahmen U Chen S Kim R 《Journal of structural and functional genomics》2003,4(2-3):129-135
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone. 相似文献