首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   15篇
  国内免费   9篇
  126篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   6篇
  2011年   11篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   15篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1974年   2篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
21.
Chemical quenching of singlet oxygen by carotenoids in plants   总被引:2,自引:0,他引:2  
Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.  相似文献   
22.
目的:探讨铅锌联合染毒对乳鼠颅骨成骨细胞增殖分化的影响。方法:分离并培养原代成骨细胞,加入不同浓度铅、锌培养48h,检测其对成骨细胞增殖的作用;用碱性磷酸酶试剂盒检测ALP活力。结果:在染铅48h后,当铅浓度≥10μmol/L时,细胞增殖功能下降(P<0.05);加锌干预48h后,铅+锌组细胞增殖功能均高于各自单独染铅组,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组、铅(10)+锌(100)组与对照组间的差异具有统计学意义(P<0.05)。铅干预48h后,100μmol/L铅组的ALP活力显著下(P<0.05),给予锌干预的铅锌联合染毒组,各组ALP活力均有增加,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组ALP活力均高于对照组,而铅(100μmol/L)+锌(50μmol/L)组ALP活力低于对照组,差异均有统计学意义(P<0.05)。结论:铅对成骨细胞有毒性作用,影响其增殖和分化功能;50μmol/L锌在一定程度上可以拮抗铅对成骨细胞增殖和分化功能的损伤,且对ALP活力的作用更显著,为铅中毒骨病的防治提供一定的科学依据。  相似文献   
23.
Assuming that differences or similarities in morphology among congeneric parasite species living in the same habitat are not a random pattern, several hypotheses explaining morphological differences were tested: (i) reproductive isolation, (ii) niche restriction resulting from competition, and (iii) niche specialization. Congeneric monogenean (platyhelminth) ectoparasites parasitizing the gills of one host species were used as an ecological model. Morphometric distances of the attachment organ and morphometric distances of the copulatory organ between species pairs were calculated, Levin's niche size and Renkonen niche overlap indices were applied. Our results support the prediction that the function of niche segregation is to achieve reproductive isolation of related species in order to prevent hybridization (reinforcement of reproductive barriers). Parasite species living in the same niche differ greatly in the size of copulatory organ. Moreover, species coexistence is facilitated by an increase in morphometric distances of copulatory organ and niche centre distances. Our results also show that species living in overlapping niches have similar attachment organs, which supports the prediction that morphologically similar species have the same ecological requirements within one host and suggests small effects of interspecific competition for the evolution of morphological diversity of attachment organs. Specialist adaptations also seem to facilitate species coexistence and affect the niche distribution within host species. Parasite species that can colonize more than one host species, i.e. generalists, occupy more distant niches within host species than strictly host-specific parasites. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76, 125–135.  相似文献   
24.
Potassium (K+) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K+ in plant homeostasis was shown. It was demonstrated that K+ gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K+ channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K+ from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K+ channel.Key words: potassium, channel, potassium channel, AKT2, phloem (re)loading, post-translational modifications, potassium batteryPotassium (K+) is the most abundant mineral element in plants, and together with nitrogen and phosphorous, is limiting for plant production in many natural and agricultural habitats. Voltage-gated K+ channels are key players in the acquisition of K+ ions from the soil and in its redistribution within the plant.1 Structurally, these channels result from the assembly of four so-called α-subunits. The subunits are encoded by nine genes in Arabidopsis and both homo- and hetero-tetramers are expressed.2,3 The K+ channel α-subunits can be categorized into four different subfamilies, based on the voltage-gating characteristics of the exogenous K+ conductance when expressed in an appropriate heterologous expression system. Kin α-subunits form hyperpolarization-activated channels that mediate K+ uptake.47 Kout α-subunits form depolarization-activated channels that mediate K+ release from cells.810 Ksilent subunits appear unable to yield functional homomeric channels, but can combine with Kin subunits and fine-tune the K+-uptake properties of the resulting heteromeric channels.1114 Finally, Kweak α-subunits form channels with complex voltage-gating; they allow both K+ uptake and release.1519 In Arabidopsis, a single member is found in this subfamily, AKT2, and this channel can assemble in heteromeric channels with the Kin subunit KAT2.20To date, only scarce and speculative information has been obtained for the function of Kweak channels. When expressed in heterologous expression systems, two different subpopulations of AKT2 channels differing in their sensitivity to voltage were found.21 Channels of the first type showed gating properties and currents analogous to that of Kin channels, while the other sort enabled a non-rectified (leak-like) current; they were open over the entire physiological voltage range.A given channel can be converted from one type to the other by post-translational modifications.21 A voltage-dependent phosphorylation was found to be an essential step for this switch,22,23 although the kinase responsible for this conversion still needs to be uncovered.24 In biophysical studies, mutant versions of the Arabidopsis Kweak channel subunit AKT2 have been created that showed impaired gating mode settings.22,23 Recently, Gajdanowicz et al. generated transgenic Arabidopsis thaliana plants that express these mutant AKT2 channels in the background of the akt2-1 null-allele plant.25 The major conclusion from analyses of these mutants is that the status switching of AKT2 from an inward-rectifying to a non-rectifying channel is crucial for plants to overcome energy-limiting conditions. This function of AKT2 could be correlated to its expression in phloem tissues. Selective expression of AKT2 under the control of the phloem companion cell-specific AtSUC2 promoter rescued the akt2-1 line, but conversely, selective expression of AKT2 under the control of the guard cell-specific GC1 promoter,26 resulted in further impairment of plant growth (Fig. 1). By combining diverse experimental approaches with mathematical simulation methods, an existing model for phloem (re)loading18,27 was fundamentally improved. This allowed the uncovering of a novel and interesting role of K+ in phloem physiology: K+ gradients present between the sieve element/companion cell (SE/CC) complex and the apoplast can serve as an energy source in phloem (re)loading processes. This “potassium battery” can be tapped by means of AKT2 regulation. This clarifies the observation of Deeken et al.28 that in AKT2 loss-of-function mutant plants, assimilates leaking away from the sieve tube were not efficiently reloaded into the main phloem stream.Open in a separate windowFigure 1AKT2 expressed only in guard cells delays plant development. (A–C) Representative wild-type, akt2-1 and akt2-1+pGC1:AKT2 complementation plants grown for 7 weeks (A), 9 weeks (B) and 12 weeks (C) under 12-h day/12-h night conditions at normal light intensity (150 µmol m−2 s−1). (D) akt2-1+pGC1:AKT2 developed a similar number of leaves as the akt2-1 knock out plants, but bolting-time was delayed. (B and E) After 9 weeks, wild-type plants were at an advanced bolting stage, akt2-1 plants had started bolting, but only initial signs of bolting were visible in akt2-1+pGC1:AKT2 plants. (C and F) At 12 weeks, akt2-1 plants had caught up with the wild-type and akt2-1+pGC1:AKT2 was just starting to bolt, although rosette-leaves were showing clear signs of senescence. For the generation of akt2-1+pGC1:AKT2, the AKT2 cDNA was fused to the guard cell-specific GC1 promoter26 kindly provided by J.I. Schroeder, San Diego. The pGC1:AKT2 construct was cloned into pGreen0229-35S by replacing the 35S promoter and then transformed into the akt2-1 knockout plant. All seeds were cold-treated for 24 h at 4°C. Plants were grown on artificial substrate (type GS-90, Einheitserde). After 2 weeks, seedlings were transferred to single pots. Plants were grown in 60% relative humidity at 21°C during the day and 18°C at night. Phenotypical analyses were done in the middle of the day. Data are shown as means ± SD of n ≥ 9 plants. Statistical analyses using Student''s t test: (D, WT/akt2-1: p < 2e-08; D, WT/pGC-AKT2: p < 2e-08; D, akt2-1/pGC-AKT2: p < 5e-03; E, WT/akt2-1: p < 4e-06; E, WT/pGC-AKT2: p < 1e-10; E, akt2-1/pGC-AKT2: p < 5e-04; F, WT/akt2-1: p = 0.51; F, WT/pGC-AKT2: p < 1e-10; F, akt2-1/pGC-AKT2: p < 1e-10).AKT2 expression is especially abundant in phloem tissues and the root stele, both of which are characterized by a poor availability of oxygen.29,30 This local internal hypoxia impairs respiratory activity of the vascular tissue and concomitantly, respiratory ATP production is reduced.31 As a consequence, phloem transport is very susceptible to decreasing oxygen supply to the plant.29,32 It is therefore comprehensible that the above mentioned support by the K+ driving force for sucrose retrieval is especially relevant in the phloem. Indeed Gajdanowicz et al.25 showed that transgenic plants lacking the AKT2 K+ channel were severely impaired in growth when exposed to mild hypoxia (10% v:v), whereas growth of wild-type plants was unaffected by this treatment. These observations illustrate the importance of biochemical flexibility in plant cells to cope with the energetic consequences of the steep oxygen concentration gradients that generally occur in plant stems and roots.In fact, the role of K+ gradients in driving sugar, amino acid and organic acid transport across plant cell membranes was first suggested several decades ago.33,34 Experimental evidence for this concept was provided by various tests in which pieces of plant tissue were incubated in solutions with different K+ concentrations and pH levels.33,34 Unfortunately, at that time the lack of genetic information to support this hypothesis (e.g., identifying transporter proteins that could provide a molecular mechanism to explain the working mechanism of substrate transport driven by a K+-motive force) resulted in this idea falling into oblivion. Indeed, the unequivocal experimental observation of this new role of K+ gradients in phloem reloading is extremely challenging. Under normal experimental conditions, K+ fluxes and sucrose fluxes are coupled during phloem loading in source tissues and unloading in sink tissues. Nonetheless, computational simulations predict that under certain conditions, a local K+/Suc antiport is also thermodynamically possible. In this antiport system, the energy from the K+ gradient is used to transport Suc into the phloem. This process is only transient; flooding the apoplast with K+ will decrease the K+ gradient. However, the gradient can be maintained for longer if surrounding cells take up the apoplastic K+ for their own use. A K+/Suc antiport will not occur in obvious sink or source tissues since the energy balances in such cells are fundamentally different. Consequently, in these tissues only the coupled symport of K+ and Suc can be observed. However, the computational predictions allowed the identification of the experimental conditions under which the effect of the K+/Suc antiport system is empirically observable at the whole plant level.An essential role in the regulation of AKT2 is played by (de)phosphorylation events of serine residues at positions S210 and S329. The replacement of both serines by asparagine (AKT2-S210N-S329N) resulted in a K+-selective leak that is locked in a continuously open mode when the channels are expressed in Xenopus oocytes. Under certain conditions, plants expressing the AKT2-S210N-S329N mutation showed growth benefits over wild-type plants; akt2-1+AKT2-S210N-S329N plants reach the generative state faster, possess an increased number of leaves and increased fresh weight (Fig. 2). Intuitively, one would expect a continuously open channel to cause severe problems for the plant, not a benefit as was observed here. We therefore have to postulate that phosphorylation at residues AKT2-S210 and AKT2-S329 is insufficient for converting AKT2 from an inward-rectifying into a non-rectifying channel; other, as yet unknown mechanisms, must contribute to the switch in the AKT2 gating mode. Such a concept would correspond to results that would otherwise be hard to explain. For instance, when both serine residues were replaced by glutamate, the mutant AKT2-S210E-S329E still showed wild-type characteristics.22 The S to E substitution is expected to mimic the phosphorylated state better than the S to N replacement. Furthermore, position AKT2-K197 has a fundamental influence on the AKT2 gating mode.23 AKT2 mutants with that particular lysine substituted with a serine are far less sensitive towards (de)phosphorylation; they display the characteristics of a pure inward-rectifying K+ channel,23 and transgenic Arabidopsis plants expressing AKT2 channels with this substitution showed the characteristics of akt2-1 knock-out plants.25 Initially, it was proposed that the positive charge is important for sensitizing AKT2 to phosphorylation. However, the charge-conserving mutant AKT2-K197R is similar to the charge inverting mutant AKT2-K197D,23 a purely inward-rectifying channel (Fig. 3). We therefore need to take into account that in plants, K197 may also be a target of post-translational modification.35 At present, we can explain the beneficial effect of the AKT2-S210N-S329N mutant on plant growth only by a multiple step regulation of AKT2 (Fig. 4). The double-N mutation would then bypass the phosphorylation step, but AKT2-S210N-S329N could still be deregulated into an inward-rectifying channel. Thus, AKT2 can be considered as a highly specialized Kin channel that can be converted into a leak-like channel by a cascade of post-translational modification steps.Open in a separate windowFigure 2Plants expressing the AKT2-S210N-S329N mutant reach the generative state faster than wild-type plants. The mutant channel AKT2-S210N-S329N was expressed under the control of the native AKT2 promoter in the akt2-1 knock-out background. (A) Photos of representative Arabidopsis thaliana plants grown 7 weeks under short day conditions (12-h day/12-h night, light intensity = 150 µE m−2s−1). Seven weeks after sowing, plants expressing only AKT2-S210N-S329N mutant channels (n = 22) differed significantly (Student''s t test, p < 4e-05) from wild-type plants (n = 20) in the height of the main inflorescent stalk (B) and fresh weight (C). At later time points, these differences decrease.25Open in a separate windowFigure 3The mutant AKT2-K197R channel is inward-rectifying. Steady-state current-voltage characteristics measured at the end of activation voltage steps. Currents were normalized to the current values measured at −145 mV in 10 mM K+ and are shown as means ± SD (n = 6).Open in a separate windowFigure 4Minimal model for AKT2 gating-mode regulation. To switch AKT2 from an inward-rectifying into a non-rectifying channel, at least two post-translational steps are postulated. (1) Phosphorylation at residues AKT2-S210 and AKT2-S329 (transitions [1]→[2] and [3]→[4]) and (2) a yet unknown modification that most likely involves the residue AKT2-K197 (transitions [1]→[3] and [2]→[4]). Only after both modifications will AKT2 allow the efflux of K+ (state [4]).  相似文献   
25.

Background

Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded.

Results

KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr161 (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr15 (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades.

Conclusions

The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.  相似文献   
26.
ABSTRACT. Herpetomonas megaseliae, Crithidia fasciculata , and Leptomonas collosoma from culture survived gut passage in Anolis carolinensis following their ingestion by this lizard. Maximum persistence of H. megaseliae in lizards, as detected by fecal culture, was seven days. No invasion of tissues by H. megaseliae could be detected by means of sectioned material, stained impression slides, or cultures inoculated with material from organs. Crithidia fasciculata was evident in cloacal fluid for up to three days in wet mount preparations. Leptomonas collosoma was observed in feces 24 h after the organisms were fed to lizards. Both C. fasciculata and L. collosoma were cultured from feces of lizards fed the parasites 24 h earlier. Herpetomonas megaseliae was differentiated in lizard feces, with greater than 40% of the forms observed being paramastigotes or opisthomastigotes. Truncate, semispherical forms resembling choanomastigotes were seen, but the kinetoplast was posterior to the nucleus in some of these. Many forms showed extensive coiling of the axoneme within the body of the flagellate. Choanomastigotes and spheromastigotes of C. fasciculata and promastigotes, sphero-mastigotes and amastigotes of L. collosoma were also observed in the feces.  相似文献   
27.
Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway.Hydrocarbons derived from fatty acids (i.e. alkanes and alkenes) are ubiquitous in plant and insect outermost tissues where they often represent a major part of cuticular waxes and play an essential role in preventing water loss from the organisms to the dry terrestrial environment (Hadley, 1989; Kunst et al., 2005). In several insect species, select cuticular alkenes also act as sex pheromones (Wicker-Thomas and Chertemps, 2010). Occurrence of alkanes or alkenes has also been reported in various microorganisms (Ladygina et al., 2006; Wang and Lu, 2013). For example, synthesis of hydrocarbons is widespread in cyanobacteria (Coates et al., 2014), and it is thought that cyanobacterial alka(e)nes contribute significantly to the hydrocarbon cycle of the upper ocean (Lea-Smith et al., 2015).Alka(e)nes of various chain lengths are important targets for biotechnology because they are major components of gasoline (mainly C5-C9 hydrocarbons), jet fuels (C5-C16), and diesel fuels (C12-C20). The alkane biosynthetic pathway of plants has been partly elucidated (Lee and Suh, 2013; Bernard and Joubès, 2013), but the use of plant hydrocarbons as a renewable source of liquid fuels is hampered by predominance of constituents with high carbon numbers (>C25), which entails solid state at ambient temperature (Jetter and Kunst, 2008). Therefore, there is great interest in the microbial pathways of hydrocarbon synthesis producing shorter chain compounds (C15-C19). In cyanobacteria, hydrocarbons are produced by two distinct pathways. The first one comprises the sequential action of an acyl-ACP reductase transforming a C15-C19 fatty acyl-ACP into a fatty aldehyde and an aldehyde-deformylating oxygenase catalyzing the oxidative cleavage of the fatty aldehyde into alka(e)ne and formic acid (Schirmer et al., 2010; Li et al., 2012). The second pathway involves a type I polyketide synthase that elongates and decarboxylates fatty acids to form alkenes with a terminal double bond (Mendez-Perez et al., 2011). Additional pathways of alkene synthesis have been described in bacteria. In Micrococcus luteus, a three-gene cluster has been shown to control the head-to-head condensation of fatty acids to form very-long-chain alkenes with internal double bonds (Beller et al., 2010). Direct decarboxylation of a long-chain fatty acid into a terminal alkene has also been reported and is catalyzed by a cytochrome P450 in Jeotgalicoccus spp. (Rude et al., 2011) and by a nonheme iron oxidase in Pseudomonas (Rui et al., 2014).Among microbes, microalgae would be ideally suited to harness the synthesis of hydrocarbons from fatty acid precursors because they are photosynthetic organisms combining a high biomass productivity (León-Bañares et al., 2004; Beer et al., 2009; Malcata, 2011; Wijffels et al., 2013) and a strong capacity to synthesize and accumulate fatty acids (Hu et al., 2008; Harwood and Guschina, 2009; Liu and Benning 2013). However, studies on microalgal alka(e)ne synthesis are scarce. In some diatoms and other algal species, a very-long-chain alkene, a C21 hexaene, has been found (Lee et al., 1970; Lee and Loeblich, 1971). Other very-long-chain alkenes have been described in the slow-growing colonial Chlorophycea Botryococcus brauni, which excretes a variety of hydrophobic compounds including C27 n-alkadienes (Metzger and Largeau, 2005; Jin et al., 2016). A decarbonylase activity converting a fatty n-aldehyde substrate to a n-alkane has been shown in B. brauni (Dennis and Kolattukudy, 1992); however, the corresponding protein has not been identified so far. Presence of shorter chain alka(e)nes in some microalga species has been reported in the context of geochemical studies (Han et al., 1968; Gelpi et al., 1970; Tornabene et al., 1980; Afi et al., 1996) but the biology of these compounds has not been investigated further.Here, we show that alka(e)nes with C15 to C17 chains can be detected in several model microalgae and originate from fatty acid metabolism. In Chlamydomonas reinhardtii and Chlorella variabilis NC64A, 7-heptadecene is identified as the major hydrocarbon produced, and we demonstrate that its synthesis depends strictly on light and uses cis-vaccenic acid as a precursor. We also show the presence of C15 to C17 alka(e)nes in Nannochloropsis sp., a model microalga from the red lineage. Absence of homologs to known hydrocarbon synthesis genes in the genomes of Chlamydomonas, Chlorella, and Nannochloropsis indicates that a hitherto unknown type of alka(e)ne-producing pathway operates in these microalgae. The wide occurrence of microalgae in marine environments suggests that microalgal alka(e)nes contribute significantly to the ocean’s hydrocarbon cycle.  相似文献   
28.
29.
AtHAK5是拟南芥高亲和性钾转运体,其基因表达受低钾条件强烈诱导,编码蛋白在低钾条件下可以整合到质膜.生物信息学分析发现其氨基酸序列含有多处潜在的磷酸化位点.本研究假设这些位点对于AtHAK5的功能至关重要,为探讨AtHAK5的功能位点,分别将AtHAK5 cDNA和带有13种不同点突变位点的AtHAK5转化到athak5突变体中,获得14种稳定表达的转基因植株.利用athak5突变体根对Cs敏感的表型,最终确定T549A和T666A为非核心磷酸化位点.如下11个位点为AtHAK5功能必需位点:F85L,T86A,T311A,T359A,P551S,D552N,S603A,S604A,K668E,S698A和V713L.  相似文献   
30.
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH. In root cells, extracellular OH activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH. An OH-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号