首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16533篇
  免费   1251篇
  国内免费   1191篇
  2024年   42篇
  2023年   239篇
  2022年   571篇
  2021年   948篇
  2020年   570篇
  2019年   760篇
  2018年   758篇
  2017年   557篇
  2016年   786篇
  2015年   1036篇
  2014年   1288篇
  2013年   1413篇
  2012年   1506篇
  2011年   1367篇
  2010年   827篇
  2009年   742篇
  2008年   843篇
  2007年   703篇
  2006年   562篇
  2005年   504篇
  2004年   417篇
  2003年   363篇
  2002年   269篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   121篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
In this study, we investigated the induction of Pseudostellaria heterophylla adventitious root and the effects of sucrose concentration and phosphate source on biomass increase and metabolites accumulation. These roots were initially cultured in Murashige and Skoog medium for 4 weeks. IBA 3.0 mg L?1 proved to be the best auxin for inducing adventitious roots and the frequency of adventitious roots induced from roots (100 %) was higher than that from leaves (78 %) and stems (27 %). The medium with 4 % sucrose resulted in the optimum biomass i.e. 1.04 g/flask DW, and the content of saponin and polysaccharides reached the peak i.e. 0.676 and 24.4 %, respectively. With regards to phosphate source, 1.25 mM phosphate concentration was more favorable for biomass of roots (0.87 g/flask of DW), whereas the optimum saponin (0.74 %) and polysaccharides (22.09 %) were achieved with 2.5 mM phosphate. However, the saponin content at 2.5 mM phosphate did not show significant difference from the saponin content at 0.625 mM (0.69 %) or 3.75 mM phosphate (0.69 %).  相似文献   
872.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   
873.
874.
The possible mechanism of adriamycin (ADR) and/or selenium (Se) deficiency-induced cardiac dysfunction, and cardioprotective effects of Se against ADR-induced cardiac toxicity were investigated in this study. Cardiac function was evaluated by plasma brain natriuretic peptide level and echocardiographic and hemodynamic parameters. Cardiac glutathione peroxidase (GPx) activity was assessed spectrophotometrically. Expression of ATP-sensitive potassium channels (KATP) subunits—SUR2A and Kir6.2—were examined by real-time PCR and Western blotting. The results showed that cardiac function and cardiac GPx activity decreased remarkably after administration of ADR or Se deficiency; more dramatic impairment of cardiac function and cardiac GPx activity were observed after co-administration of ADR and Se deficiency. Mechanically, it is novel for us to find down-regulation of KATP subunits gene expression in cardiac tissue after administration of ADR or Se deficiency, and more significant inhibition of cardiac KATP gene expression was identified after co-administration of ADR and Se deficiency. Furthermore, cardiac toxicity of ADR was found alleviated by Se supplementation, accompanied by restoring of cardiac GPx activity and cardiac KATP gene expression. These results indicate that decreased expression of cardiac KATP is involved in adriamycin and/or Se deficiency-induced cardiac dysfunction; Se deficiency exacerbates adriamycin-induced cardiac dysfunction by future inhibition of KATP expression; Se supplementation seems to protect against adriamycin-induced cardiac dysfunction via restoring KATP expression, showing potential clinical application in cancer chemotherapy.  相似文献   
875.
The aim of the present study was to explore the role of selenoprotein P (SePP) in the etiology of the endemic sudden cardiac death in Yunnan, China. The levels of SePP of 124 subjects and glutathione peroxidase (GPx) of 119 subjects were measured. The subjects were from the old and new endemic areas and non-endemic areas. The levels of SePP and GPx of the subjects of the old endemic area were significantly higher than those of the subjects of the new endemic area and the non-endemic areas, respectively. The Pearson’s correlation among SePP, GPx, and the number of the incident cases of the disease were statistically significant. These correlations show that there is an inverse relationship among the number of patients and the levels of SePP (r? = ?? 0.9800, P ?= ?0.0200) and GPx (r? = ?? 0.961, P ?= ?0.009). The results show that selenium deficiency might play an important role in the incidence of the disease.  相似文献   
876.
Although studies have shown that arsenic exposure can induce apoptosis in a variety of cells, the exact molecular mechanism of chronic arsenicosis remains unclear. Based on our previous study on human serum, the present study was to determine whether pigment epithelium-derived factor (PEDF) plays a role in the damage induced by chronic arsenic exposure in a rat model and to explore the possible signaling pathway involved. Thirty male Wistar rats were randomly divided into three groups and the arsenite doses administered were 0, 10, and 50 mg/L, respectively. The experiment lasted for 6 months. Our results showed that level of arsenic increased significantly in serum, liver, brain, and kidney in arsenic-exposed groups. It was indicated that PEDF protein was widely distributed in the cytoplasm of various types of cells in liver, brain, and kidney. PEDF protein level was only changed when the arsenite dose reached 50 mg/L in liver and brain, whereas it was not changed in the kidney. In order to investigate the possible mechanism of PEDF-exerted damages upon arsenite exposure, apoptosis in liver and brain was assessed. The proportion of apoptotic cells gradually increased with increasing arsenic administration. The ratio of Bax/Bcl-2 in the high arsenic group (50 mg/L) was significantly higher than that in the control group. Therefore, we thought PEDF played a role in cell apoptosis of liver and brain which induced by sodium arsenite exposure, and the results also demonstrated that Bax and Bcl-2 might be two key targets in the action of PEDF.  相似文献   
877.
Nickel is an important kind of metal and a necessary trace element in people’s production and livelihood; it is also a well-confirmed human carcinogen. In the past few years, researchers did a large number of studies about the molecular mechanisms of nickel carcinogenesis, and they focused on activation of proto-oncogenes and inactivation of anti-oncogenes caused by gene point mutation, gene deletion, gene amplification, DNA methylation, chromosome condensation, and so on that were induced by nickel. However, the researches on tumorigenic molecular mechanisms regulated by microRNAs (miRNAs) are rare. In this study, we established nickel-induced tumor by injecting Ni3S2 compounds to Wistar Rattus. By establishing a cDNA library of miRNA from rat muscle tumor tissue induced by Ni3S2, we found that the expression of miR-222 was significantly upregulated in tumor tissue compared with the normal tissue. As we expected, the expression levels of target genes of miR-222, CDKN1B and CDKN1C, were downregulated in the nickel-induced tumor. The same alteration of miR-222 and its target genes was also found in malignant 16HBE cells induced with Ni3S2 compounds. We conclude that miR-222 may promote cell proliferation infinitely during nickel-induced tumorigenesis in part by regulating the expression of its target genes CDKN1B and CDKN1C. Our study elucidated a novel molecular mechanism of nickel-induced tumorigenesis.  相似文献   
878.
879.
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines.  相似文献   
880.
The type VI secretion system (T6SS), a multisubunit needle-like apparatus, has recently been found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both E. cloacae and Salmonella typhimurium. Tae4 acts as a dl-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small angle x-ray scattering study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer that consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop antipathogen drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号