首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8023篇
  免费   581篇
  国内免费   742篇
  2024年   16篇
  2023年   96篇
  2022年   241篇
  2021年   420篇
  2020年   312篇
  2019年   366篇
  2018年   351篇
  2017年   281篇
  2016年   376篇
  2015年   538篇
  2014年   598篇
  2013年   659篇
  2012年   808篇
  2011年   688篇
  2010年   387篇
  2009年   387篇
  2008年   417篇
  2007年   347篇
  2006年   309篇
  2005年   255篇
  2004年   214篇
  2003年   184篇
  2002年   156篇
  2001年   155篇
  2000年   116篇
  1999年   104篇
  1998年   71篇
  1997年   75篇
  1996年   74篇
  1995年   56篇
  1994年   52篇
  1993年   34篇
  1992年   43篇
  1991年   22篇
  1990年   26篇
  1989年   20篇
  1988年   16篇
  1987年   17篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有9346条查询结果,搜索用时 15 毫秒
101.
Selecting native species for restoration is often done without proper ecological background, particularly with regard to how native and invasive species interact. Here, we provide insights suggesting that such information may greatly enhance restoration success. The performance of the native vine, Pueraria lobata, and that of the invasive bitter vine, Mikania micrantha, were investigated in South China to test how priority effects (timing and rate of germination and seedling growth) and competition (phytochemical effects and competitive ability) impact invasive plant performance. We found that, in the absence of competition, the germination rate of M. micrantha, but not of P. lobata, was significantly affected by light availability. P. lobata seedlings also performed better than those of M. micrantha during early growth phases. Under competition, negative phytochemical effects of P. lobata on M. micrantha were strong and we found M. micrantha to have lower performance when grown with P. lobata compared to when grown by itself. Relative interaction indexes indicated that, under interspecific competition, P. lobata negatively affected (i.e., inhibited) M. micrantha, whereas M. micrantha positively affected (i.e., facilitated) P. lobata. Higher photosynthetic efficiency and soil nutrient utilization put P. lobata at a further advantage over M. micrantha. Field trails corroborated these experimental findings, showing little recruitment of M. micrantha in previously invaded and cleared field plots that were sown with P. lobata. Thus, P. lobata is a promising candidate for ecological restoration and for reducing impacts of M. micrantha in China. This research illustrates that careful species selection may improve restoration outcomes, a finding that may also apply to other invaded ecosystems and species.  相似文献   
102.
Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications. Here we show that comprehensive and quantitative assessment of cell growth, productivity, and product quality attributes are feasible at the 200–1,200 cell colony stage, within 14 days of the single cell cloning in static 96-well plate culture. The early cell line characterization performed prior to the clone expansion in suspension culture can be used for a single-step, direct selection of high quality clones. Such clones were comparable, both in terms of productivity and critical quality attributes (CQAs), to the top-ranked clones identified using an established iterative clone screening approach. Using a complex, multi-subunit antigen as a model protein, we observed stable CQA profiles independently of the cell culture format during the clonal expansion as well as in the batch and fed-batch processes. In conclusion, we propose an accelerated clone selection approach that can be readily incorporated into various cell line development workstreams, leading to significant reduction of the project timelines and resource requirements.  相似文献   
103.
Cui  Kai-Cheng  Liu  Min  Ke  Gui-Hua  Zhang  Xing-Yuan  Mu  Bo  Zhou  Min  Hu  Yang  Wen  Ying-Qiang 《Plant Cell, Tissue and Organ Culture》2021,146(3):621-633

As one of the most economically important fruit crops in the world, the grapevine (Vitis vinifera) suffers significant yield losses from various pathogens including powdery mildew caused by Erysiphe necator. In contrast, several wild Chinese grapevines, including Vitis pseudoreticulata accession Baihe-35-1, are highly resistant to powdery mildew pathogens. Here, we identified a grapevine gene CSN5 (COP9 signalosome complex subunit 5), designated VvCSN5, that was differentially expressed between the resistant ‘Baihe-35-1’ and susceptible ‘Thompson Seedless’ during powdery mildew isolate Erysiphe necator NAFU1 infection. Moreover, transient silencing of VvCSN5 in ‘Thompson Seedless’ leaves enhanced resistance to En NAFU1. This resistance manifested in cell wall callose deposition at attempted infection sites and hypersensitive response-like cell death of penetrated epidermal cells. Several defense-related marker genes (VvPR1, VvPR3, VvPAD4, and VvRBOHD) had higher basal expression levels in VvCSN5-silenced leaves. In addition, we found the structure and activity of CSN5 promoters in ‘Thompson Seedless’ and ‘Baihe-35-1’ were different, which may have been behind their different resistances to powdery mildew infection. Taken together, these results implied that grapevine CSN5 plays an important role in the response to powdery mildew infection.

  相似文献   
104.
The relationship between rs3746444 T>C single-nucleotide polymorphism (SNP) in microRNA (mir)-499 and risk of gastric cancer (GC) has been widely investigated. However, the association was still unconfirmed. Here, we first recruited 490 GC patients and 1476 controls, and conducted a case-control study. And we did not find any association between rs3746444 T>C SNP polymorphism and risk of GC. Subsequently, we conducted a meta-analysis to explore the association of mir-499 rs3746444 polymorphism with GC development. Two authors searched the PubMed and EMBASE databases up to October 15, 2019 independently. Finally, nine literatures involving 12 independent studies were included. In total, 3954 GC cases and 9745 controls were recruited for meta-analysis. The results suggested that allele model, homozygote model and recessive model could increase the risk of overall GC (P = 0.002, 0.009 and 0.013, respectively). When we excluded the studies violated HWE, this association was also found in allele model (P = 0.020) and dominant model (P= 0.044). In subgroup analyses, we identified that rs3746444 SNP in mir-499 increased the risk of GC in Asians and gastric cardiac adenocarcinoma (GCA) subgroups. No significant bias of selection was found (all P>0.1). Test of sensitivity analysis indicated that our findings were stable. Additionally, we found that the power value was 0.891 in the allele model, suggesting the reliability of our findings. In summary, our analysis confirmed the association between rs3746444 and the risk of GC, especially in Asians and in patients with GCA.  相似文献   
105.
Background: Glycolysis was a representative hallmark in the tumor microenvironment (TME), and we aimed to explore the correlations between glycolysis with immune activity and clinical traits in bladder urothelial carcinoma (BLCA).Methods: Our study obtained glycolysis scores for each BLCA samples from TCGA by a single-sample gene set enrichment analysis (ssGSEA) algorithm, based on a glycolytic gene set. The relationship between glycolysis with prognosis, clinical characteristics, and immune function were investigated subsequently.Results: We found that enhanced glycolysis was associated with poor prognosis and metastasis in BLCA. Moreover, glycolysis had a close correlation with immune function, and enhanced glycolysis increased immune activities. In other words, glycolysis had a positive correlation with immune activities. Immune checkpoints such as IDO1, CD274, were up-regulated in high-glycolysis group as well.Conclusion: We speculated that in BLCA, elevated glycolysis enhanced immune function, which caused tumor cells to overexpress immune checkpoints to evade immune surveillance. Inhibition of glycolysis might be a promising assistant for immunotherapy in bladder cancer.  相似文献   
106.
Lei  Lei  Yang  Luomiao  Cui  Bowen  Liu  HuaLong  Wang  Jingguo  Zheng  Hongliang  Xin  Wei  Zou  Detang 《Plant Growth Regulation》2021,95(1):97-110
Plant Growth Regulation - β-ketoacyl-CoA synthase is a key enzyme in the biosynthesis of over-long-chain fattty acids; thus, it plays a crucial role in plant resistance to stress. Herein, 33...  相似文献   
107.
Molecular and Cellular Biochemistry - Drug resistance is one of the major challenges for cancer therapies. In recent years, research on disease-related molecular signaling pathways has become the...  相似文献   
108.
Faithful genome integrity maintenance plays an essential role in cell survival. Here, we identify the RNA demethylase ALKBH5 as a key regulator that protects cells from DNA damage and apoptosis during reactive oxygen species (ROS)-induced stress. We find that ROS significantly induces global mRNA N6-methyladenosine (m6A) levels by modulating ALKBH5 post-translational modifications (PTMs), leading to the rapid and efficient induction of thousands of genes involved in a variety of biological processes including DNA damage repair. Mechanistically, ROS promotes ALKBH5 SUMOylation through activating ERK/JNK signaling, leading to inhibition of ALKBH5 m6A demethylase activity by blocking substrate accessibility. Moreover, ERK/JNK/ALKBH5-PTMs/m6A axis is activated by ROS in hematopoietic stem/progenitor cells (HSPCs) in vivo in mice, suggesting a physiological role of this molecular pathway in the maintenance of genome stability in HSPCs. Together, our study uncovers a molecular mechanism involving ALKBH5 PTMs and increased mRNA m6A levels that protect genomic integrity of cells in response to ROS.  相似文献   
109.
Archives of Microbiology - Severe acute respiratory syndrome virus 2 (SARS-CoV-2) belongs to the single-stranded positive-sense RNA family. The virus contains a large genome that encodes four...  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号