首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   22篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   10篇
  2019年   3篇
  2018年   6篇
  2017年   9篇
  2016年   12篇
  2015年   17篇
  2014年   12篇
  2013年   16篇
  2012年   24篇
  2011年   21篇
  2010年   7篇
  2009年   12篇
  2008年   13篇
  2007年   13篇
  2006年   21篇
  2005年   17篇
  2004年   9篇
  2003年   12篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1983年   1篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
51.
Salicylic acid and photosynthesis: signalling and effects   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is a well-known signalling molecule playing a role in local and systemic acquired resistance against pathogens as well as in acclimation to certain abiotic stressors. As a stress-related signalling compound, it may directly or indirectly affect various physiological processes, including photosynthesis. The effects of exogenously applied SA on plant physiological processes under optimal environmental conditions are controversial. Several studies suggest that SA may have a positive effect on germination or plant growth in various plant species. However, SA may also act as a stress factor, having a negative influence on various physiological processes. Its mode of action depends greatly on several factors, such as the plant species, the environmental conditions (light, temperature, etc.) and the concentration. Exogenous SA may also alleviate the damaging effects of various stress factors, and this protection may also be manifested as higher photosynthetic capacity. Unfavourable environmental conditions have also been shown to increase the endogenous SA level in plants. Recent results strongly suggest that controlled SA levels are important in plants for optimal photosynthetic performance and for acclimation to changing environmental stimuli. The present review discusses the effects of exogenous and endogenous SA on the photosynthetic processes under optimal and stress conditions.  相似文献   
52.
Esophageal adenocarcinoma (EAC) is one of the fastest growing malignancies in the US and needs newer therapeutic and diagnostic strategies. Chronic inflammation plays a role in the pathogenesis of EAC and contributes to the dysplastic conversion of normal esophageal epithelium to Barrett's esophagus and frank adenocarcinoma. Chemokines play important roles in mediating inflammation and recent evidence implicates these ligands and their receptors in the development and spread of various tumors. We demonstrated that the chemokines IL8, CXCL1 and CXCL3 are significantly overexpressed during esophageal carcinogenesis and accompanied by amplification and demethylation of the chr4q21 gene locus. We also demonstrated that IL8 levels can be detected in serum of patients with EAC and can serve as potential biomarkers. We now demonstrate that inhibition of IL8 receptor, CXCR2, leads to decreased invasiveness of esophageal adenocarcinoma derived cells without affecting cellular proliferation. Taken together, these studies reveal the important roles that chemokines play in development of esophageal cancer and demonstrate that these pathways can serve as potential therapeutic targets.  相似文献   
53.
Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i) How does cattle grazing affect species composition and diversity of the grasslands? (ii) What are the effects of grazing on short-lived and perennial noxious species? (iii) Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands) was sampled from 2006–2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable livestock type.  相似文献   
54.

Background

It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257–264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT.

Methods

In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study.

Results

Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP.

Conclusion

No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.  相似文献   
55.
Repetitive cell cycles, which are essential to the perpetuation of life, are orchestrated by an underlying biochemical reaction network centered around cyclin-dependent protein kinases (Cdks) and their regulatory subunits (cyclins). Oscillations of Cdk1/CycB activity between low and high levels during the cycle trigger DNA replication and mitosis in the correct order. Based on computational modeling, we proposed that the low and the high kinase activity states are alternative stable steady states of a bistable Cdk-control system. Bistability is a consequence of system-level feedback (positive and double-negative feedback signals) in the underlying control system. We have also argued that bistability underlies irreversible transitions between low and high Cdk activity states and thereby ensures directionality of cell cycle progression.  相似文献   
56.
Properly designed (randomized and/or balanced) experiments are standard in ecological research. Molecular methods are increasingly used in ecology, but studies generally do not report the detailed design of sample processing in the laboratory. This may strongly influence the interpretability of results if the laboratory procedures do not account for the confounding effects of unexpected laboratory events. We demonstrate this with a simple experiment where unexpected differences in laboratory processing of samples would have biased results if randomization in DNA extraction and PCR steps do not provide safeguards. We emphasize the need for proper experimental design and reporting of the laboratory phase of molecular ecology research to ensure the reliability and interpretability of results.  相似文献   
57.
Analysis of the coenzyme Q system and the monosaccharide pattern of purified cell walls were used for species characterization in the genus Kluyveromyces. All the type strains of the genus possess coenzyme Q-6 and the mannose-glucose (Saccharomyces type) cell wall sugar pattern. With the help of Random Amplified Polymorphic DNA-Polymerase Chain Reaction analysis 17 species were separated: K. aestuarii, K. africanus, K. bacillisporus, K. blattae, K. delphensis, K. dobzhanski, K. lactis (anamorph Candida sphaerica), K. lodderae, K. marxianus (syn. K. fragilis, K. bulgaricus, K. cicerisporus anamorphs Candida macedoniensis, C. pseudotropicalis, C. kefyr), K. phaffii, K. piceae, K. polysporus, K. sinensis, K. thermotolerans (syn. K. veronae, anamorph Candida dattila), K. waltii, K. wickerhamii, K. yarrowii (anamorph Candida tannotolerans). A strain of K. drosophilarum showed with the type strain of K. lactis only 63% similarity. The strain originally described as the type strain of K. cellobiovorus nom. nud. was excluded from the genus (Q-9), and found to be conspecific with the type strain of Candida intermedia.Abbreviations nDNA nuclear DNA - RAPD-PCR Random Amplified Polymorphic DNA-Polymerase Chain Reaction - T type strain of the epithet  相似文献   
58.
Parallel studies of primary breast carcinomas and corresponding distant metastases samples reveal considerable differences. Our aim was to highlight this issue from another perspective and provide further data based on 98 patient samples: 69 primary breast carcinoma and 85 distant metastases from bone, central nervous system (CNS) and lung (56 paired). Two independent series of immunohistochemical reactions with different antibodies for estrogen receptor (ER), progesterone receptor (PgR) and human epidermal growth factor receptor 2 (Her2), along with HER2 fluroscence in situ hybridization (FISH) were performed on tissue microarrays to classify breast carcinoma and distant metastases samples into Luminal A, Luminal B-proliferating, Luminal B-HER2+, HER2+ and triple negative (TNBC) surrogate breast cancer groups. Correlation and agreement between the two assessments of ER and PgR were fair-to-moderate, and almost perfect for HER2 and Ki67. There was 40% discordance concerning immunophenotype between breast carcinomas and distant metastases. Most common metastatic site of ER+ breast carcinoma was the skeletal system (59.2%), whereas that of TNBCs was the CNS (58.8%) and lungs (23.5%). Distant metastases in bones were mostly luminal (54.3%), in the CNS, Luminal B (53.2%), and in the lung, TNBC (37.5%). The change of drugable properties of primary breast cancers in the respective bone and CNS metastases suggests that characterization of the metastasis is necessary for appropriate treatment planning.  相似文献   
59.
60.
Steppe is among the most endangered biomes of the world, especially in Eastern Europe, where more than 90 % of original steppes have been destroyed due to conversion into croplands, afforestation and other human activities. Currently, steppe vegetation is often restricted to places unsuitable for ploughing, such as ancient burial mounds called kurgans. The aim of our study was to collect and synthesise existing knowledge on kurgans by a review of research papers and grey literature. The proportion of kurgans covered by steppe vegetation increases from west to east and from lowlands to uplands. Despite their small size, kurgans act as biodiversity hotspots and harbour many red-listed species. High overall species richness and a high proportion of grassland specialists are maintained by a pronounced fine-scale environmental heterogeneity. The main factors threatening the biodiversity of kurgans are intensified agriculture and construction works. We conclude that kurgans can play a crucial role in preserving steppe vegetation, especially in intensively used agricultural landscapes in the western part of the steppe zone. Despite the vital role of kurgans in sustaining steppe vegetation, we identified serious knowledge gaps on their distribution, vegetation, flora and fauna and their potential role in steppe restoration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号