首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   4篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   12篇
  2014年   11篇
  2013年   11篇
  2012年   16篇
  2011年   13篇
  2010年   2篇
  2009年   6篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有183条查询结果,搜索用时 390 毫秒
121.
Glycine is a critical factor in ischemia as reduced astrocytic and increased extracellular glycine levels aggravate the neurotoxic effect of glutamate and consequently, increase the extent of brain damage. Extracellular levels of glycine are primarily regulated by the plasma membrane glycine transporter 1. In the present study, we examined the effects of transient ischemia (1 h occlusion of the middle cerebral artery; followed by 0 h, 0.5 h, 1 h, 2 h, 4 h, 24 h or 48 h reperfusion) on immunoreactivity and mRNA expression of glycine transporter 1 in the rat forebrain. In control animals, glycine transporter 1-immunoreactivity was strong in diencephalic and certain telencephalic structures, moderate in the globus pallidus, and rather low in the cortex and striatum. In situ hybridization studies revealed a similar distribution pattern of glycine transporter 1 mRNA expression. One hour occlusion of the middle cerebral artery resulted in a significant decrease in ipsilateral glycine transporter 1-immunoreactivity and mRNA expression in a circumscribed region of the preoptic/hypothalamic area; both the immunoreactivity and mRNA exhibited further reductions with increasing reperfusion time. In contrast, the cerebral cortex and the globus pallidus showed an increase of glycine transporter 1-immunoreactivity after 0.5 h reperfusion; the elevation proved to be transient in the somatosensory cortex and remained sustained in the globus pallidus after longer reperfusion times. Western blot analysis of globus pallidus samples from the ipsilateral side confirmed higher glycine transporter 1 protein levels. These results suggest an elevated expression of the transporter protein facilitating the glial uptake of glycine from the extracellular space. However, glycine transporter 1 mRNA expression was not significantly different in the penumbra regions from the corresponding contralateral sites of the injury. Together, these findings indicate that post-translational mechanisms are of primary importance in elevating glycine transporter 1 protein levels following transient ischemia.  相似文献   
122.

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. The Deanna protocol (DP) is a comprehensive treatment approach that includes a metabolic therapy in the form of a supplement complex that improved neurological function, increased motor function and survival in SOD1-G93A mice and has been reported to alleviate symptoms in patients with ALS; therefore, it has been proposed as a treatment for the disease.

Objectives

We hypothesized that the major components of the DP, including arginine alpha-ketoglutarate, gamma amino butyric acid (GABA), medium chain triglycerides (MCT), and soluble coenzyme Q10 (ubiquinol) supports energy metabolism by increasing energy intermediates of the tricarboxylic acid cycle in a mouse model of ALS (SOD1-G93A).

Methods

We explored the potential therapeutic use of DP by testing the effects of DP supplementation on the metabolomics profile of SOD1-G93A mice. In addition, we assessed time to paralysis in a Caenorhabditis elegans model of ALS (TDP-43) given DP supplementation. SOD1-G93A mice were fed a standard rodent diet (SD) or SD with low dose (LOW) or high dose of DP (HIGH). Global metabolomics analysis was performed on blood plasma from treated and untreated animals. Additionally, the time to paralysis of TDP-43 ALS C. elegans treated with and without the individual and combination DP supplements was measured.

Results

30 and 49 biochemicals were significantly altered in the plasma of LOW and HIGH groups, respectively. Metabolites associated with mitochondrial energy metabolism, arginine metabolism, as well as long- and medium-chain fatty acids, GABA and related intermediates were elevated in response to DP. Elements of DP, arginine and alpha-ketoglutarate, GABA, and MCTs prolonged the rate of final paralysis of C. elegans TDP-43 disease models.

Conclusion

Targeting energy metabolism with the DP supplement as a metabolic therapy produces a change in the global metabolic profile of ALS mice that support the role of the DP for enhanced mitochondrial energy metabolism and prolongs time to paralysis of ALS C. elegans.
  相似文献   
123.
The human ABCG2 (ABCP/MXR/BCRP) protein is a recently recognized ABC half-transporter, which forms homodimers in the plasma membrane and actively extrudes a wide variety of chemically unrelated compounds from the cells. This protein protects our cells and tissues against various xenobiotics, with a crucial role in the intestine, liver, placenta, and the blood-brain barrier. Moreover, ABCG2 seems to have a key function in stem cell protection/regulation, and also in hypoxic defense mechanisms. Widely occurring single nucleotide polymorphisms in ABCG2 may affect absorption and distribution, altering the effectiveness and toxicity of drugs in large populations. At the clinics, overexpression of ABCG2 in tumor cells confers cancer multidrug resistance to a variety of newly developed anticancer agents. On the other hand, specific substrate mutants of ABCG2 are advocated for use as selectable markers in stem-cell based gene therapy.  相似文献   
124.
The closely related human ABC half-transporters, ABCG1 and ABCG4, have been suggested to play an important role in cellular lipid/sterol regulation but no experimental data for their expression or function are available. We expressed ABCG1 and ABCG4 and their catalytic site mutant variants in insect cells, generated specific antibodies, and analyzed their function in isolated membrane preparations. ABCG1 had a high basal ATPase activity, further stimulated by lipophilic cations and significantly inhibited by cyclosporin A, thyroxine or benzamil. ABCG4 had a lower basal ATPase activity which was not modulated by any of the tested compounds. The catalytic site (K-M) mutants had no ATPase activity. Since dimerization is a requirement for half-transporters, we suggest that both ABCG1 and ABCG4 function as homodimers. Importantly, we also found that co-expression of the ABCG4-KM mutant selectively abolished the ATPase activity of the ABCG1 and therefore they most probably also heterodimerize. The heterologous expression, specific recognition, and functional characterization of these transporters should help to delineate their physiological role and mechanism of action.  相似文献   
125.
Oxamides as novel NR2B selective NMDA receptor antagonists   总被引:1,自引:0,他引:1  
A novel series of oxamides derived from indole-2-carboxamides was identified as potent NR2B selective NMDA receptor antagonists. Several members of this group showed good analgesic activity in the mouse formalin test.  相似文献   
126.
The phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) with a motif arrangement as follows: (Ig)11(IgFn2)2Ig(Fn)3Ig(Fn)2Ig(Fn)3(Ig)2(Fn)2(Ig)2 FnKinase(Ig)4. Other regions of note include a 79-residue sequence between Ig domains 6 and 7 (from the N terminus) in which more than 60% of the residues are Pro, Glu, Val, or Lys and between the 7th and 8th Ig domains, a DFRXXL motif similar to that thought to be necessary for high affinity binding of myosin light chain kinase to F-actin. Two major phosphorylation sites, i.e. D1 and D2, were located in linker regions between Ig domains 7 and 8 and Ig domains 21 and 22, respectively. Correlation of the phosphorylation state of twitchin, using antibodies specific to D1 and D2, with mechanical properties suggested that phosphorylation of both D1 and D2 is required for relaxation from the catch state.  相似文献   
127.
Structural disorder throws new light on moonlighting   总被引:2,自引:0,他引:2  
A basic mechanism by which individual proteins can increase network complexity is moonlighting, whereby a given protein fulfils more than one function. Traditionally, this phenomenon is attributed to separate binding surfaces of globular, folded proteins but we suggest that intrinsically unstructured proteins (IUPs) might provide radically different mechanisms. Eleven IUPs have been identified that suggest that the structural malleability of IUPs gives rise to unprecedented cases of moonlighting by eliciting opposing (inhibiting and activating) action on different partners or even the same partner molecule. Unlike classical cases, these proteins use the same region or overlapping interaction surfaces to exert distinct effects and employ non-conventional mechanisms to switch function, enabled by their capacity to adopt different conformations upon binding. Owing to the apparent functional benefits, we expect to see many more examples of this parsimonious use of protein material in complex metabolic networks.  相似文献   
128.
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.  相似文献   
129.
The caspase-activated DNase (CAD) is the primary nuclease responsible for oligonucleosomal DNA fragmentation during apoptosis. The DNA fragmentation factor (DFF) is composed of the 40-kDa CAD (DFF40) in complex with its cognate 45-kDa inhibitor (inhibitor of CAD: ICAD or DFF45). The association of ICAD with CAD not only inhibits the DNase activity but is also essential for the co-translational folding of CAD. Activation of CAD requires caspase-3-dependent proteolysis of ICAD. The tertiary structures of neither the inactive nor the activated DFF have been conclusively established. Whereas the inactive DFF is thought to consist of the CAD/ICAD heterodimer, activated CAD has been isolated as a large (>MDa) multimer, as well as a monomer. To establish the subunit stoichiometry of DFF and some of its structural determinants in normal and apoptotic cells, we utilized size-exclusion chromatography in combination with co-immunoprecipitation and mutagenesis techniques. Both endogenous and heterologously expressed DFF have an apparent molecular mass of 160-190 kDa and contain 2 CAD and 2 ICAD molecules (CAD/ICAD)2 in HeLa cells. Although the N-terminal (CIDE-N) domain of CAD is not required for ICAD binding, it is necessary but not sufficient for ICAD homodimerization in the DFF. In contrast, the CIDE-N domain of ICAD is required for CAD/ICAD association. Using bioluminescence resonance energy transfer (BRET), dimerization of ICAD in DFF was confirmed in live cells. In apoptotic cells, endogenous and exogenous CAD forms limited oligomers, representing the active nuclease. A model is proposed for the rearrangement of the DFF subunit stoichiometry in cells undergoing programmed cell death.  相似文献   
130.
Astroglial cell cultures were derived from newborn rat forebrain and cultured for 5 days in serum containing-, and for an additional 4 days in a serum-free, defined medium. At the end of this 9-day-long period, basic astroglial growth factor (AGF2) was administered to the culture medium (10 ng per ml). Cells were subsequently cultured in AGF2 containing serum-free, defined medium for further two weeks. At definite intervals of culturing, unidirectional influx of both Na+ and K+ (INa and IK, respectively) was determined by applying22Na and42K. The AGF2-treated cultures showed highly increased, amiloride-sensitive INa at the early exposure period (2–8 hours), similar to that we have reported about cultured astroglia exposed to AGF2 for minutes. They also exhibited significant furosemide-sensitive-, while relatively poor ouabain-sensitive component of INa. However, at later periods of exposure to AGF2, INa was significantly reduced, particularly due to the decrease of its amiloride-sensitive component, while its furosemide-sensitive component further increased with the time of AGF2 treatment. In contrast to INa, the IK in the cultures exposed to AGF2 increased significantly in the course of the long-term exposure period, particularly the ouabain-, and furosemide-sensitive-components, while its amiloride-sensitive component, similarly to that of INa, decreased. Our findings show that the initial activation of the Na+/H+ (or K+/H+) exchange, what characterized the cation transport changes by short-term exposure of astroglial cells to AGF2 in our previous study, comes relatively soon to a cessation but activation of the Na+, K+-pump and the furosemide-sensitive Na+ and K+ influxes further increases. Thus, they suggest the possibility that furosemide-sensitive cation movements play a role, besides the Na+, K+-pump, in the control of glial cell differentiation.Cente de Neurochimie du CNRS.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号