首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   59篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   24篇
  2017年   14篇
  2016年   25篇
  2015年   30篇
  2014年   41篇
  2013年   35篇
  2012年   64篇
  2011年   60篇
  2010年   36篇
  2009年   39篇
  2008年   64篇
  2007年   59篇
  2006年   62篇
  2005年   50篇
  2004年   57篇
  2003年   51篇
  2002年   51篇
  2001年   17篇
  2000年   22篇
  1999年   14篇
  1998年   13篇
  1997年   12篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1992年   15篇
  1991年   8篇
  1990年   21篇
  1989年   15篇
  1988年   15篇
  1987年   21篇
  1986年   31篇
  1985年   18篇
  1984年   13篇
  1983年   9篇
  1982年   16篇
  1981年   14篇
  1980年   11篇
  1979年   13篇
  1978年   9篇
  1977年   15篇
  1975年   8篇
  1974年   18篇
  1973年   8篇
  1972年   11篇
  1970年   12篇
  1968年   7篇
排序方式: 共有1252条查询结果,搜索用时 15 毫秒
71.
Na+/H+exchanger (NHE) activation has been documented to contribute toendothelial cell injury caused by inflammatory states. However, therole of NHEs in regulation of the endothelial cell inflammatoryresponse has not been investigated. The present study tested thehypothesis that NHEs contribute to endothelial cell inflammationinduced by endotoxin or interleukin (IL)-1. NHE inhibition usingamiloride, 5-(N-ethyl-N-isopropyl)-amiloride, and5-(N-methyl-N-isobutyl)amiloride as well as thenon-amiloride NHE inhibitors cimetidine, clonidine, and harmalinesuppressed endotoxin-induced IL-8 and monocyte chemoattractant protein(MCP)-1 production by human umbilical endothelial vein cells (HUVECs). The suppressive effect of amiloride on endotoxin-induced IL-8 production was associated with a decreased accumulation of IL-8 mRNA.NHE inhibitors suppressed both inhibitory (I)B degradation andnuclear factor (NF)-B DNA binding, suggesting that a decrease inactivation of the IB-NF-B system contributed to the suppression of HUVEC inflammatory response by NHE blockade. NHE inhibition decreased also the IL-1-induced HUVEC inflammatory response, becauseamiloride suppressed IL-1-induced E-selectin expression on HUVECs.These results demonstrate that maximal activation of the HUVECinflammatory response requires a functional NHE.

  相似文献   
72.
It is thought that changes in gene expression in the brain mediate chronic ethanol-induced complex behaviors such as tolerance, dependence, and sensitization, and also relate to ethanol-induced brain toxicity. Using high-density filter-based cDNA microarrays (GeneFilters), we analyzed the expression of over 5000 genes in the dorsal hippocampus of rats treated with 12% ethanol or tap water for 15 months. Ethanol-induced changes in gene expression were particularly prominent in two groups of genes. One group consisted of oxidoreductases, including ceruloplasmin, uricase, branched-chain alpha-keto acid dehydrogenase, NADH ubiquinone oxidoreductase, P450, NAD+-isocitrate dehydrogenase, and cytochrome c oxidase, which may be related to ethanol-induced oxidative stress. The other group of genes included ADP-ribosylation factor, RAS related protein rab10, phosphatidylinositol 4-kinase, dynein-associated polypeptides, and dynamin-1, which seem to be involved in membrane trafficking. The results may reveal some of the pathways involved in ethanol-induced pathophysiological changes.  相似文献   
73.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   
74.
75.
76.
Chaperones are highly conserved proteins responsible for the preservation and repair of the correct conformation of cellular macromolecules, such as proteins, RNAs, etc. Environmental stress leads to chaperone (heat-shock protein, stress protein) induction reflecting the protective role of chaperones as a key factor for cell survival and in repairing cellular damage after stress. The present review summarizes our current knowledge about the chaperone-deficiency in the aging process, as well as the possible involvement of chaperones in neurodegenerative diseases, such as in Alzheimer’s, Parkinson’s, Huntington- and prion-related diseases. We also summarize a recent theory implying chaperones as “buffers” of variations in the human genome, which role probably increased during the last 200 years of successful medical practice minimizing natural selection. Chaperone-buffered, silent mutations may be activated during the aging process, which leads to the phenotypic exposure of previously hidden features and might contribute to the onset of polygenic diseases, such as atherosclerosis, cancer, diabetes and several neurodegenerative diseases.  相似文献   
77.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   
78.
SUMMARY: SCide is a program to identify stabilization centers from known protein structures. These are residues involved in cooperative long-range contacts, which can be formed between various regions of a single polypeptide chain, or they can belong to different peptides or polypeptides in a complex. The server takes a PDB file as an input, and the result is presented in graphical or text format. AVAILABILITY: SCide is available on the web at http://www.enzim.hu/scide. The source code can be obtained from the authors on request.  相似文献   
79.
Chaperone function plays a key role in repairing proteotoxic damage and in the maintenance of cell survival. Here we compare the regulatory role of molecular chaperones (heat shock proteins, stress proteins) in cellular senescence, apoptosis and necrosis. We also review the current data on chaperone level and function in aging cells, and list some possible therapeutic interventions. Finally, we postulate a hypothesis, that increasing chaperone occupancy might be an important event which forces cells out of the normal cell cycle towards senescence. In the case of severe stress, this may lead to apoptosis or, following lethal stress, to cell necrosis.  相似文献   
80.
Actinospore infection of oligochaetes living in the mud of 3 freshwater biotopes in Japan was studied. Using the cell-well plate method, a new aurantiactinomyxon type was found in 0.77% of the examined Tubifex tubifex oligochaete specimens from a brook near Yamanashi Prefectural Fisheries Experimental Station on Fuji Mountain. In 0.14% of Lumbriculus variagetus collected from Chitose River, near Chitose Salmon Hatchery, a new siedleckiella type was found, while at the same time 8.1% of the Lumbriculus spp. oligochaetes released triactinomyxons of Myxobolus arcticus. Of the examined Rhyacodrilus komarovi oligochaetes collected from the Mena River system, Hokkaido, 0.2, 0.6, 0.5 and 0.8% were infected with echinactinomyxon, neoactinomyxum and 2 types of triactinomyxon spores, respectively, and described in our previous paper. The oligochaetes released actinospores for several weeks. Actinospore infection showed high intensity in positive oligochaetes in the case of all the actinosporean types. Two of the actinospore types (aurantiactinomyxon and siedleckiella) presented here have not been previously described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号