首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   9篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   10篇
  2013年   17篇
  2012年   16篇
  2011年   7篇
  2010年   11篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
31.
The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.  相似文献   
32.
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB–PTPIP51 interaction and ER–mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological read‐out of ER–mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS‐expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUS‐induced reductions to ER–mitochondria associations and are linked to activation of glycogen synthase kinase‐3β (GSK‐3β), a kinase already strongly associated with ALS/FTD.  相似文献   
33.
Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA’s (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease.  相似文献   
34.
Lidocaine block of cardiac sodium channels   总被引:27,自引:7,他引:20       下载免费PDF全文
Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (τless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (τ approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 μM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 μM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the “modulated-receptor hypothesis” of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.  相似文献   
35.
Several previous studies have demonstrated increased synthesis of cerebral prostaglandins (PGs) following convulsive activity. In addition, it has been proposed that endogenous prostanoids have anticonvulsive properties and may act to attenuate or limit seizure activity in vivo. In this study we have used focal injections of prostaglandins (PGs) to examine their potential modulatory effects on electrically kindled seizure activity. We report that the intra-amygdaloid administration of PGD2, PGE2 or PGF2a, (1-10 micrograms) showed no significant effects on any of the kindled seizure parameters studied. The highest dose of PGF2a was ineffective at all pretreatment times between 2-30 mins. Our data is inconsistent with the view that PGs exert protective effects against seizure activity, at least within the amygdala against electrically kindled seizures.  相似文献   
36.
The formation of the nasal passages involves complex morphogenesis and their lining develops a spatially ordered pattern of differentiation, with distinct domains of olfactory and respiratory epithelium. Using antibodies to the neural cell adhesion molecule (N-CAM), keratan sulphate and heparan sulphate proteoglycan (HSPG) and a panel of lectins (agglutinins of Canavalia ensiformis (ConA), Dolichos biflorus (DBA), peanut (PNA), Ricinis communis (RCA1), soybean (SBA), Ulex europaeus (UEA1), and wheatgerm (WGA], we have documented cell surface characteristics of each epithelial domain. Binding of antibodies to N-CAM and to keratan sulphate, and the lectins ConA, PNA, RCA1, SBA and WGA marks the olfactory epithelial domain only. The restriction of N-CAM to the sensory region of the epithelium has also been reported in the developing ear. This striking similarity is consistent with the idea that N-CAM may be involved in the division of functionally and histologically distinct cell groups within an epithelium. We traced the olfactory-specific cell markers during development to gain insights into the origin of the epithelial lining of the nasal passages. All reagents bind at early stages to the thickened nasal placode and surrounding head ectoderm and then become progressively restricted to the olfactory domain. The expression of these characteristics appears to be modulated during development rather than being cell autonomous. The distribution of keratan sulphate was compared with collagen type II in relation to the specification of the chondrocranium. Keratan sulphate and collagen type II are only colocalized at the epithelial-mesenchymal interface during early nasal development. At later stages, only collagen type II is expressed at the interface throughout the nasal passages, whereas keratan sulphate is absent beneath the respiratory epithelium.  相似文献   
37.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   
38.
Past geological and climatological processes shape extant biodiversity. In the Hawaiian Islands, these processes have provided the physical environment for a number of extensive adaptive radiations. Yet, single species that occur throughout the islands provide some of the best cases for understanding how species respond to the shifting dynamics of the islands in the context of colonization history and associated demographic and adaptive shifts. Here, we focus on the Hawaiian happy-face spider, a single color-polymorphic species, and use mitochondrial and nuclear allozyme markers to examine (1) how the mosaic formation of the landscape has dictated population structure, and (2) how cycles of expansion and contraction of the habitat matrix have been associated with demographic shifts, including a "quantum shift" in the genetic basis of the color polymorphism. The results show a marked structure among populations consistent with the age progression of the islands. The finding of low genetic diversity at the youngest site coupled with the very high diversity of haplotypes on the slightly older substrates that are highly dissected by recent volcanism suggests that the mosaic structure of the landscape may play an important role in allowing differentiation of the adaptive color polymorphism.  相似文献   
39.
Aims:  This study investigated the survival and transport of sewage sludge-borne pathogenic organisms in soils.
Methods and Results:  Undisturbed soil cores were treated with Salmonella enterica ssp. enterica serovar Typhimurium- lux (STM- lux ) and human adenovirus (HAdV)-spiked sewage sludge. Following an artificial rainfall event, these pathogens were analysed in the leachate and soil sampled from different depths (0–5 cm, 5–10 cm and 10–20 cm) after 24 h, 1 and 2 months. Significantly more STM- lux and HAdV leached through the soil cores when sewage sludge was present. Significantly more STM- lux were found at all soil depths, at all time periods in the sewage sludge treatments, compared to the controls. The rate of decline of STM- lux in the controls was more rapid than in the sewage sludge treatments. Survival and transport of HAdV were minimal.
Conclusions:  The presence of sewage sludge can significantly influence the transport and survival of bacterial pathogens in soils, probably because of the presence of organic matter. Environmental contamination by virus is unlikely because of strong soil adsorption.
Significance and Impact of the Study:  This study suggests that groundwater contamination from vertical movement of pathogens is a potential risk and that it highlights the importance of the treatment requirements for biosolids prior to their application to land.  相似文献   
40.

Background

Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.

Results

Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence.

Conclusions

Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号