首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   42篇
  362篇
  2023年   2篇
  2021年   6篇
  2017年   6篇
  2016年   2篇
  2015年   9篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   8篇
  2010年   17篇
  2009年   10篇
  2008年   14篇
  2007年   9篇
  2006年   11篇
  2005年   12篇
  2004年   15篇
  2003年   13篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   15篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1975年   3篇
  1974年   5篇
  1973年   3篇
  1961年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有362条查询结果,搜索用时 9 毫秒
191.
DNA repair mechanisms are fairly well characterized for nuclear DNA while knowledge regarding the repair mechanisms operable in mitochondria is limited. Several lines of evidence suggest that mitochondria contain DNA repair mechanisms. DNA lesions are removed from mtDNA in cells exposed to various chemicals. Protein activities that process damaged DNA have been detected in mitochondria. As will be discussed, there is evidence for base excision repair (BER), direct damage reversal, mismatch repair, and recombinational repair mechanisms in mitochondria, while nucleotide excision repair (NER), as we know it from nuclear repair, is not present.  相似文献   
192.
RECQ1 is the most abundant of the five human RecQ helicases, but little is known about its biological significance. Recent studies indicate that RECQ1 is associated with origins of replication, suggesting a possible role in DNA replication. However, the functional role of RECQ1 at damaged or stalled replication forks is still unknown. Here, for the first time, we show that RECQ1 promotes strand exchange on synthetic stalled replication fork-mimicking structures and comparatively analyze RECQ1 with the other human RecQ helicases. RECQ1 actively unwinds the leading strand of the fork, similar to WRN, while RECQ4 and RECQ5β can only unwind the lagging strand of the replication fork. Human replication protein A modulates the strand exchange activity of RECQ1 and shifts the equilibrium more to the unwinding mode, an effect also observed for WRN. Stable depletion of RECQ1 affects cell proliferation and renders human cells sensitive to various DNA damaging agents that directly or indirectly block DNA replication fork progression. Consequently, loss of RECQ1 activates DNA damage response signaling, leads to hyper-phosphorylation of RPA32 and activation of CHK1, indicating replication stress. Furthermore, depletion of RECQ1 leads to chromosomal condensation defects and accumulation of under-condensed chromosomes. Collectively, our observations provide a new insight into the role of RECQ1 in replication fork stabilization and its role in the DNA damage response to maintain genomic stability.  相似文献   
193.
The expression of six imprinted genes (Dlk1, Gtl2, Igf2r, Kcnq1, Nnat, and Peg1) was examined in brains of 21 mice derived from N2 × N2 intercrosses between C57BL/6 and MOLF/Ei strains. Imprinting of Igf2r, Kcnq1, Gtl2, and Dlk1 varied among individuals. As three of these genes are implicated in cell–cell signaling or cell–environment interactions, variation in their imprinting may influence a wide range of biological processes from cell differentiation to behavior. To elucidate the mechanisms underlying the interindividual imprinting variation in the brain, we focused our effort on the paternally expressed gene Dlk1. We investigated expression of Dlk1 in the brains of animals from N9 and N10 backcrosses and found that reactivation of the normally silent maternal Dlk1 allele in the N9 and N10 mice occurred less often than in N2 × N2 animals. Our data suggest that trans-acting genetic factors of MOLF/Ei origin facilitate the reactivation of the normally silent maternal allele of Dlk1. We mapped one of these factors to the proximal part of Chr 7. The results of bisulfite sequencing methylation analysis show that reactivation of the maternal allele was also associated with hypermethylation of the intragenic differentially methylated region (IG DMR), which is the imprinting control region for the Dlk1Gtl2 domain. Thus, the imprinting status of Dlk1 in the brain depends upon trans-acting genetic influences and correlates with the methylation status of a specific subregion of the IG DMR.The GenBank accession numbers for sequences described in this article are AY644388–644394.  相似文献   
194.
195.
There is an age-associated decline in the mitochondrial function of the Wistar rat heart. Previous reports from this lab have shown a decrease in mitochondrial cytochrome c oxidase (COX) activity associated with a reduction in COX gene and protein expression and a similar decrease in the rate of mitochondrial protein synthesis. Damage to mitochondrial DNA may contribute to this decline.

Using the HPLC-Coularray system (ESA, USA), we measured levels of nuclear and mitochondrial 8-oxo-2'-deoxyguanosine (8-oxodG) from 6-month (young) and 23-month-old (senescent) rat liver DNA. We measured the sensitivity of the technique by damaging calf thymus DNA with photoactivated methylene blue for 30s up to 2h. The levels of damage were linear over the entire time course including the shorter times which showed levels comparable to those expected in liver. For the liver data, 8-oxodG was reported as a fraction of 2-deoxyguanosine (2-dG). There was no change in the levels of 8-oxodG levels in the nuclear DNA from 6 to 23-months of age. However, the levels of 8-oxodG increased 2.5-fold in the mitochondrial DNA with age. At 6 months, the level of 8-oxodG in mtDNA was 5-fold higher than nuclear and increased to approximately 12-fold higher by 23 months of age. These findings agree with other reports showing an age-associated increase in levels of mtDNA damage; however, the degree to which it increases is smaller. Such damage to the mitochondrial DNA may contribute to the age-associated decline in mitochondrial function.  相似文献   
196.
197.

Background  

Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.  相似文献   
198.
Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.  相似文献   
199.
A major wound response in grand fir (Abies grandis) sapling stems is the rapid increase in monoterpene production at the site of injury. Monoterpene cyclases (synthases) catalyze the formation of monoterpenes from geranyl pyrophosphate, and total cyclase activity increases markedly on wounding. At least six distinct cyclases, producing different monoterpene products, have been isolated from wounded grand fir saplings and characterized. The predominant wound-inducible cyclase produces both alpha- and beta-pinene. This pinene cyclase was purified, and polyclonal antibodies were generated in rabbits against the sodium dodecyl sulfate-denatured protein. The antibody preparation was found to cross-react by Western blotting with other grand fir monoterpene cyclases that produce different olefinic products, but not with monoterpene cyclases from related conifer species (Pinus contorta and P. ponderosa) or from angiosperms (Mentha piperita and M. spicata). The increase in monoterpene cyclase activity after wounding was closely correlated with the appearance of new cyclase protein as determined by immunoblotting. These results indicate that the wound-dependent increase in monoterpene cyclase activity is a consequence of de novo synthesis of cyclase protein.  相似文献   
200.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号