首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   8篇
  国内免费   1篇
  137篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   3篇
  1982年   2篇
  1977年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
131.
Neonicotinoid insecticides selectively target the invertebrate nicotinic acetylcholine receptor and disrupt excitatory cholinergic neurotransmission. First launched over 20 years ago, their broad pest spectrum, variety of application methods and relatively low risk to nontarget organisms have resulted in this class dominating the insecticide market with global annual sales in excess of $3.5 bn. This remarkable commercial success brings with it conditions in the field that favour selection of resistant phenotypes. A number of important pest species have been identified with mutations at the nicotinic acetylcholine receptor associated with insensitivity to neonicotinoids. The detailed characterization of these mutations has facilitated a greater understanding of the invertebrate nicotinic acetylcholine receptor.  相似文献   
132.
A Moutinho  AJ Trewavas    R Malho 《The Plant cell》1998,10(9):1499-1510
Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisindolylmaleimide. We found that growing pollen tubes exhibited higher protein kinase activity in the apical region, whereas nongrowing cells showed uniform distribution. Modification of growth direction by diffusion of inhibitors/activators from a micropipette showed the spatial redistribution of kinase activity to predict the new growth orientation. Localized increases in [Ca2+]c induced by photolysis of caged Ca2+ that led to reorientation also increased kinase activity. Molecular and immunological assays suggest that this kinase may show some functional homology with protein kinase C. We suggest that the tip-localized gradient of kinase activity promotes Ca2+-mediated exocytosis and may act to regulate Ca2+ channel activity.  相似文献   
133.
134.
Cancer therapy     
In recent years a growing recognition that molecularly-targeted therapies face formidable obstacles has revived interest in more generic tumor cell phenotypes that could be exploited for therapy. Two recent reports demonstrate that cancer cell survival is critically dependent on the activity of MTH1, a nucleotide pyrophosphatase that converts the oxidized nucleotides 8-oxo-dGTP and 2-OH-dATP to the corresponding monophosphates, thus preventing their incorporation into genomic DNA. Tumor cells frequently overexpress MTH1, probably because malignant transformation creates oxidative stress that renders the nucleotide pool highly vulnerable to oxidation. As a result, MTH1 inhibition in cancer cells results in accumulation and incorporation of 8-oxo-dGTP and 2-OH-dATP into DNA, leading to DNA damage and cell death. This toxic effect is highly cancer cell-specific, as MTH1 is generally dispensable for the survival of normal, untransformed cells. Importantly, MTH1 proves to be a “druggable” enzyme that can be inhibited both by an existing protein kinase inhibitor drug, crizotinib, and by novel compounds identified through screening. Inhibition of MTH1 leading to toxic accumulation of oxidized nucleotides specifically in tumor cells therefore represents an example of a “non-personalised” approach to cancer therapy.  相似文献   
135.
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.  相似文献   
136.
137.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号