全文获取类型
收费全文 | 172篇 |
免费 | 14篇 |
专业分类
186篇 |
出版年
2022年 | 2篇 |
2021年 | 6篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 2篇 |
2013年 | 10篇 |
2012年 | 6篇 |
2011年 | 11篇 |
2010年 | 9篇 |
2009年 | 6篇 |
2008年 | 12篇 |
2007年 | 12篇 |
2006年 | 14篇 |
2005年 | 7篇 |
2004年 | 18篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1971年 | 1篇 |
1945年 | 1篇 |
1926年 | 1篇 |
排序方式: 共有186条查询结果,搜索用时 15 毫秒
31.
BŁAŻEJ BERKOWSKI CHRISTIAN KLUG 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2012,45(1):24-33
Berkowski, B & Klug, C. 2011: Lucky rugose corals on crinoid stems: unusual examples of subepidermal epizoans from the Devonian of Morocco. Lethaia, Vol. 45, pp. 24–33. In the fossil record, evidence for true epizoans, i.e. living animals inhabiting other living host‐animals, is rather rare. A host reaction is usually needed to proof the syn vivo‐settling of the epizoan. Herein, we provide a first report of such an epizoan biocoenosis from various strata of the Early Devonian of Hamar Laghdad, the world‐renowned Moroccan mud‐mound locality. In this case, solitary rugose corals settled as larvae on crinoid stems, perhaps at a spot where the epidermis was missing for some reason (injury, disease). Both the crinoid and the coral began to grow around each other. By doing so, the affected crinoid columnals formed a swelling, where ultimately only an opening slightly larger than the coral orifice remained. We discuss both macroecological and small‐scale synecological aspects of this biocoenosis. The coral profited from its elevated home because it reached into more rapid currents providing the polyp with more food than at the densely populated seafloor, which was probably covered by a coral‐meadow around the mounds and hydrothermal vents. □Corals, crinoids, Early Devonian, epizoans, Morocco, Rugosa. 相似文献
32.
33.
Tony Hickey Jules Devaux Vijay Rajagopal Amelia Power David Crossman 《Biophysical reviews》2022,14(1):403
In the Carboniferous, insects evolved flight. Intense selection drove for high performance and approximately 100 million years later, Hymenoptera (bees, wasps and ants) emerged. Some species had proportionately small wings, with apparently impossible aerodynamic challenges including a need for high frequency flight muscles (FMs), powered exclusively off aerobic pathways and resulting in extreme aerobic capacities. Modern insect FMs are the most refined and form large dense blocks that occupy 90% of the thorax. These can beat wings at 200 to 230 Hz, more than double that achieved by standard neuromuscular systems. To do so, rapid repolarisation was circumvented through evolution of asynchronous stimulation, stretch activation, elastic recoil and a paradoxically slow Ca2+ reuptake. While the latter conserves ATP, considerable ATP is demanded at the myofibrils. FMs have diminished sarcoplasmic volumes, and ATP is produced solely by mitochondria, which pack myocytes to maximal limits and have very dense cristae. Gaseous oxygen is supplied directly to mitochondria. While FMs appear to be optimised for function, several unusual paradoxes remain. FMs lack any significant equivalent to the creatine kinase shuttle, and myofibrils are twice as wide as those of within cardiomyocytes. The mitochondrial electron transport systems also release large amounts of reactive oxygen species (ROS) and respiratory complexes do not appear to be present at any exceptional level. Given that the loss of the creatine kinase shuttle and elevated ROS impairs heart function, we question how do FM shuttle adenylates at high rates and tolerate oxidative stress conditions that occur in diseased hearts? 相似文献
34.
Ferguson MA Brimacombe JS Brown JR Crossman A Dix A Field RA Güther ML Milne KG Sharma DK Smith TK 《Biochimica et biophysica acta》1999,1455(2-3):327-340
African sleeping sickness is a debilitating and often fatal disease caused by tsetse fly transmitted African trypanosomes. These extracellular protozoan parasites survive in the human bloodstream by virtue of a dense cell surface coat made of variant surface glycoprotein. The parasites have a repertoire of several hundred immunologically distinct variant surface glycoproteins and they evade the host immune response by antigenic variation. All variant surface glycoproteins are anchored to the plasma membrane via glycosylphosphatidylinositol membrane anchors and compounds that inhibit the assembly or transfer of these anchors could have trypanocidal potential. This article compares glycosylphosphatidylinositol biosynthesis in African trypanosomes and mammalian cells and identifies several steps that could be targets for the development of parasite-specific therapeutic agents. 相似文献
35.
36.
37.
38.
39.
Alvaro Ingles-Prieto Nikolas Furthmann Samuel H. Crossman Alexandra-Madelaine Tichy Nina Hoyer Meike Petersen Vanessa Zheden Julia Biebl Eva Reichhart Attila Gyoergy Daria E. Siekhaus Peter Soba Konstanze F. Winklhofer Harald Janovjak 《PLoS genetics》2021,17(4)
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair. 相似文献
40.
The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081 下载免费PDF全文
Thomson NR Howard S Wren BW Holden MT Crossman L Challis GL Churcher C Mungall K Brooks K Chillingworth T Feltwell T Abdellah Z Hauser H Jagels K Maddison M Moule S Sanders M Whitehead S Quail MA Dougan G Parkhill J Prentice MB 《PLoS genetics》2006,2(12):e206
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens. 相似文献