首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1473篇
  免费   227篇
  1700篇
  2021年   31篇
  2020年   11篇
  2019年   12篇
  2018年   16篇
  2017年   12篇
  2016年   25篇
  2015年   37篇
  2014年   38篇
  2013年   78篇
  2012年   56篇
  2011年   59篇
  2010年   43篇
  2009年   35篇
  2008年   50篇
  2007年   56篇
  2006年   49篇
  2005年   52篇
  2004年   62篇
  2003年   52篇
  2002年   44篇
  2001年   48篇
  2000年   56篇
  1999年   42篇
  1998年   19篇
  1997年   18篇
  1996年   20篇
  1995年   12篇
  1994年   17篇
  1993年   18篇
  1992年   35篇
  1991年   47篇
  1990年   47篇
  1989年   28篇
  1988年   37篇
  1987年   28篇
  1986年   30篇
  1985年   28篇
  1984年   18篇
  1983年   14篇
  1982年   21篇
  1981年   14篇
  1979年   14篇
  1978年   16篇
  1977年   11篇
  1976年   17篇
  1975年   16篇
  1974年   17篇
  1973年   19篇
  1970年   23篇
  1968年   18篇
排序方式: 共有1700条查询结果,搜索用时 0 毫秒
131.
In yeast, the pheromone α-factor acts as an antiproliferative factor that induces G1 arrest and cellular differentiation. Previous data have indicated that Far1, a factor dedicated to pheromone-induced cell cycle arrest, is under positive and negative posttranslational regulation. Phosphorylation by the pheromone-stimulated mitogen-activated protein (MAP) kinase Fus3 has been thought to enhance the binding of Far1 to G1-specific cyclin-dependent kinase (Cdk) complexes, thereby inhibiting their catalytic activity. Cdk-dependent phosphorylation events were invoked to account for the high instability of Far1 outside early G1 phase. To confirm any functional role of Far1 phosphorylation, we undertook a systematic mutational analysis of potential MAP kinase and Cdk recognition motifs. Two putative phosphorylation sites that strongly affect Far1 behavior were identified. A change of serine 87 to alanine prevents the cell cycle-dependent degradation of Far1, causing enhanced sensitivity to pheromone. In contrast, threonine 306 seems to be an important recipient of an activating modification, as substitutions at this position abolish the G1 arrest function of Far1. Only the phosphorylated wild-type Far1 protein, not the T306-to-A substitution product, can be found in stable association with the Cdc28-Cln2 complex. Surprisingly, Far1-associated Cdc28-Cln2 complexes are at best moderately inhibited in immunoprecipitation kinase assays, suggesting unconventional inhibitory mechanisms of Far1.  相似文献   
132.
133.
The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.  相似文献   
134.
The validation of protein structures through functional assays has been the norm for many years. Functional assays perform this validation for water-soluble proteins very well, but they need to be performed in the same environment as that used for the structural analysis. This is difficult for membrane proteins that are often structurally characterized in detergent environments, although functional assays for these proteins are most frequently performed in lipid bilayers. Because the structure of membrane proteins is known to be sensitive to the membrane mimetic environment, such functional assays are appropriate for validating the protein construct, but not the membrane protein structure. Here, we compare oriented sample solid-state NMR spectral data of diacylglycerol kinase previously published with predictions of such data from recent structures of this protein. A solution NMR structure of diacylglycerol kinase has been obtained in detergent micelles and three crystal structures have been obtained in a monoolein cubic phase. All of the structures are trimeric with each monomer having three transmembrane and one amphipathic helices. However, the solution NMR structure shows typical perturbations induced by a micelle environment that is reflected in the predicted solid-state NMR resonances from the structural coordinates. The crystal structures show few such perturbations, especially for the wild-type structure and especially for the monomers that do not have significant crystal contacts. For these monomers the predicted and observed data are nearly identical. The thermostabilized constructs do show more perturbations, especially the A41C mutation that introduces a hydrophilic residue into what would be the middle of the lipid bilayer inducing additional hydrogen bonding between trimers. These results demonstrate a general technique for validating membrane protein structures with minimal data obtained from membrane proteins in liquid crystalline lipid bilayers by oriented sample solid-state NMR.  相似文献   
135.
136.
Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.  相似文献   
137.
Trans-splicing is an unusual process in which two separate RNA strands are spliced together to yield a mature mRNA. We present a novel computational approach which has an overall accuracy of 82% and can predict 92% of known trans-splicing sites. We have applied our method to chromosomes 1 and 3 of Leishmania major, with high-confidence predictions for 85% and 88% of annotated genes respectively. We suggest some extensions of our method to other systems.  相似文献   
138.
Integrative analysis of cell cycle control in budding yeast   总被引:14,自引:0,他引:14       下载免费PDF全文
The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo.  相似文献   
139.
Rates of structural chromosome abnormalities were analyzed in 24,951 fetuses studied prenatally in which there were no grounds to suspect an inherited abnormality. In about one in 200 prenatal cytogenetic diagnoses, an unexpected structural abnormality was found. The observed rate was 5.3 per 1,000, of which 1.7 per 1,000 were unbalanced and 3.6 per 1,000 balanced. The rate of inherited abnormalities was 3.1-3.7 per 1,000 (0.4-0.9 per 1,000 for unbalanced abnormalities and 2.6-2.8 per 1,000 for balanced abnormalities). The rate of mutants in this series was, by contrast, 1.6-2.2 per 1,000 (0.8-1.2 per 1,000 for unbalanced abnormalities and 0.8-1.0 per 1,000 for balanced abnormalities). The rate of balanced Robertsonian translocation carriers was 0.6 per 1,000 (about 0.25 per 1,000 for mutants and 0.35 per 1,000 for inherited abnormalities), and for other balanced abnormalities, 3.0 per 1,000 (about 0.6 per 1,000 for mutants and 2.4 per 1,000 for inherited abnormalities). The rates of unbalanced Robertsonian translocations was about 0.1 per 1,000, almost all of which were mutants. For supernumerary rearrangements, the rate was 0.9 per 1,000 (about 0.4 per 1,000 inherited and 0.5 per 1,000 mutant). The rates of all unbalanced (nonmosaic) inherited abnormalities (4.0-5.2 per 10,000) were intermediate between higher rates estimated in all conceptuses (9.1-15.8 per 10,000) and rates observed in newborns (1.5-2.5 per 10,000). This trend is probably attributable to fetal mortality associated with unbalanced rearrangements. The rates of balanced (nonmosaic) inherited abnormalities (26.0-28.0 per 10,000), however, were considerably higher than the rates in all conceptuses (13-16.7 per 10,000) or in all live births (12.2-16.0 per 10,000). The major difference was in the rate of inversions. The use of "banding" methods in the studies of amniocentesis but not in most of the live births or abortus studies probably contributes to at least some of these differences. One trend in parental age among the inherited abnormalities was noteworthy. Paternal age was elevated for inherited balanced reciprocal structural abnormalities of paternal origin but not of maternal origin. With regard to sex ratio, there was a greater proportion of females than males among the unbalanced rearrangements both inherited and mutant. There was no obvious sex difference among the balanced rearrangements.  相似文献   
140.
Histamine has an important role in regulation of immune response which is mediated by differential expression of four distinct receptors, H1R-H4R. H1R and HR2 have previously been shown to be involved with modulation of lung inflammation. H4R is also expressed on inflammatory cells; therefore, we investigated the potential role of H4R in development of allergic asthma in a murine model. We determined that the H4R agonist 4-methylhistamine when delivered intratracheally before Ag challenge mitigated airway hyperreactivity and inflammation. This was associated with an increase in IL-10 and IFN-gamma, but not TGF-beta or IL-16, as well as a decrease in IL-13 in the bronchoalveolar lavage fluid. We also observed that H4R agonist instillation resulted in accumulation of FoxP3(+) T cells suggesting a direct effect on T regulatory cell recruitment. To investigate this further, we determined the in vitro effect of H4R stimulation on human T cell migration. The H4R agonist induced a 2- to 3-fold increase in T cell migration, similar to that seen for H1R agonists. Cells transmigrating to the H4R agonist, but not H1R, were skewed toward a CD4 cell expressing CD25 and intracellular FoxP3. H4R-responsive cells suppressed proliferation of autologous T cells, an effect that was dependent on IL-10 production. We conclude that H4R stimulation enriches for a regulatory T cell with potent suppressive activity for proliferation. These findings identify a novel function for H4R and suggest a potential therapeutic approach to attenuation of asthmatic inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号