首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   18篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   9篇
  2005年   4篇
  2004年   13篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   4篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   5篇
  1972年   1篇
  1970年   1篇
  1953年   1篇
  1931年   1篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
91.

Background and Aims

The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes.

Methods

Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae.

Key Results

The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species.

Conclusions

Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.Key words: Epidermis, Fabaceae, Papilionoideae, Caesalpinioideae, Mimosoideae, petal surface, scanning electron microscopy, papillose conical cells, tabular rugose cells, tabular flat cells, organ identity  相似文献   
92.
93.
Large-scale gene-sequencing projects that have been undertaken in animals have involved organisms from contrasting taxonomic groups, such as worm, fly and mammal. By contrast, similar botanical projects have focused exclusively on flowering plants. This has made it difficult to carry out fundamental research on how plants have evolved from simple to complex forms - a task that has been very successful in animals. However, in the flowering plants, the many completely or partially sequenced genomes now becoming available will provide a powerful tool to investigate the details of evolution in one group of related organisms.  相似文献   
94.
95.
Two contrasting approaches have been used to construct the overall tree of life from molecular data: one involves the analysis of single large datasets, while the other involves joining many independent smaller analyses into a supertree. A recent study uses the latter approach to produce the most complete phylogeny yet of flowering plant families.  相似文献   
96.
BACKGROUND: The Onchocerciasis Control Program (OCP) in West Africa has been closed down at the end of 2002. All subsequent control will be transferred to the participating countries and will almost entirely be based on periodic mass treatment with ivermectin. This makes the question whether elimination of infection or eradication of onchocerciasis can be achieved using this strategy of critical importance. This study was undertaken to explore this issue. METHODS: An empirical approach was adopted in which a comprehensive analysis was undertaken of available data on the impact of more than a decade of ivermectin treatment on onchocerciasis infection and transmission. Relevant entomological and epidemiological data from 14 river basins in the OCP and one basin in Cameroon were reviewed. Areas were distinguished by frequency of treatment (6-monthly or annually), endemicity level and additional control measures such as vector control. Assessment of results were in terms of epidemiological and entomological parameters, and as a measure of inputs, therapeutic and geographical coverage rates were used. RESULTS: In all of the river basins studied, ivermectin treatment sharply reduced prevalence and intensity of infection. Significant transmission, however, is still ongoing in some basins after 10-12 years of ivermectin treatment. In other basins, transmission may have been interrupted, but this needs to be confirmed by in-depth evaluations. In one mesoendemic basin, where 20 rounds of four-monthly treatment reduced prevalence of infection to levels as low as 2-3%, there was significant recrudescence of infection within a few years after interruption of treatment. CONCLUSIONS: Ivermectin treatment has been very successful in eliminating onchocerciasis as a public health problem. However, the results presented in this paper make it almost certain that repeated ivermectin mass treatment will not lead to the elimination of transmission of onchocerciasis from West Africa. Data on 6-monthly treatments are not sufficient to draw definitive conclusions.  相似文献   
97.
The genus Streptocarpus comprises species with diverse body plans. Caulescent species produce leaves from a conventional shoot apical meristem (SAM), whereas acaulescent species lack a conventional SAM and produce only a single leaf (the unifoliate form) or clusters of leaves from the base of more mature leaves (the rosulate form). These distinct morphologies reflect fundamental differences in the role of the SAM and the process of leaf specification. A subfamily of KNOTTED-like homeobox (KNOX) genes are known to be important in regulating meristem function and leaf development in model species with conventional morphologies. To test the involvement of KNOX genes in Streptocarpus evolution, two parologous KNOX genes (SSTM1 and SSTM2) were isolated from species with different growth forms. Their phylogenetic analysis suggested a gene duplication before the subgeneric split of Streptocarpus and resolved species relationships, supporting multiple evolutionary origins of the rosulate and unifoliate morphologies. In S. saxorum, a caulescent species with a conventional SAM, KNOX proteins were expressed in the SAM and transiently downregulated in incipient leaf primordia. The ability of acaulescent species to initiate leaves from existing leaves was found to correlate with SSTM1 expression and KNOX protein accumulation in leaves and to reflect genetic differences at two loci. Neither locus corresponded to SSTM1, suggesting that cis-acting differences in SSTM1 regulation were not responsible for evolution of the rosulate and unifoliate forms. However, the involvement of KNOX proteins in leaf formation in rosulate species suggests that they have played an indirect role in the development of morphological diversity in Streptocarpus.  相似文献   
98.
Aeschynanthus (Gesneriaceae) is a large genus of tropical epiphytes that is widely distributed from the Himalayas and China throughout South-East Asia to New Guinea and the Solomon Islands. Polymerase chain reaction (PCR) consensus sequences of the internal transcribed spacers (ITS) of Aeschynanthus nuclear ribosomal DNA showed sequence polymorphism that was difficult to interpret. Cloning individual sequences from the PCR product generated a phylogenetic tree of 23 Aeschynanthus species (two clones per species). The intraindividual clone pairs varied from 0 to 5.01%. We suggest that the high intraindividual sequence variation results from low molecular drive in the ITS of Aeschynanthus. However, this study shows that, despite the variation found within some individuals, it is still possible to use these data to reconstruct phylogenetic relationships of the species, suggesting that clone variation, although persistent, does not pre-date the divergence of Aeschynanthus species. The Aeschynanthus analysis revealed two major clades with different but overlapping geographic distributions and reflected classification based on morphology (particularly seed hair type).  相似文献   
99.
Using stably expressed fluorescent indicator proteins, we have determined for the first time the relationship between the free Ca2+ and Ca2+-calmodulin concentrations in intact cells. A similar relationship is obtained when the free Ca2+ concentration is externally buffered or when it is transiently increased in response to a Ca2+-mobilizing agonist. Below a free Ca2+ concentration of 0.2 microM, no Ca2+-calmodulin is detectable. A global maximum free Ca2+-calmodulin concentration of approximately 45 nM is produced when the free Ca2+ concentration exceeds 3 microM, and a half-maximal concentration is produced at a free Ca2+ concentration of 1 microM. Data for fractional saturation of the indicators suggest that the total concentration of calmodulin-binding proteins is approximately 2-fold higher than the total calmodulin concentration. We conclude that high-affinity calmodulin targets (Kd /= 100 nM) occurs only where free Ca2+-calmodulin concentrations can be locally enhanced.  相似文献   
100.
Monokaryotic mycelia of the homobasidiomycete Coprinus cinereus form asexual spores (oidia) constitutively in abundant numbers. Mycelia with mutations in both mating type loci (Amut Bmut homokaryons) also produce copious oidia but only when exposed to blue light. We used such an Amut Bmut homokaryon to define environmental and inherent factors that influence the light-induced oidiation process. We show that the Amut function causes repression of oidiation in the dark and that light overrides this effect. Similarly, compatible genes from different haplotypes of the A mating type locus repress sporulation in the dark and not in the light. Compatible products of the B mating type locus reduce the outcome of light on A-mediated repression but the mutated B function present in the Amut Bmut homokaryons is not effective. In dikaryons, the coordinated regulation of asexual sporulation by compatible A and B mating type genes results in moderate oidia production in light. Copyright 1998 Academic Press.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号