首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   39篇
  418篇
  2021年   4篇
  2018年   3篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   18篇
  2013年   20篇
  2012年   18篇
  2011年   9篇
  2010年   9篇
  2009年   14篇
  2008年   15篇
  2007年   14篇
  2006年   25篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   14篇
  2000年   16篇
  1999年   14篇
  1998年   15篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   9篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   11篇
  1980年   8篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1974年   6篇
  1973年   7篇
  1972年   2篇
  1971年   5篇
  1970年   2篇
  1967年   3篇
  1966年   2篇
  1965年   4篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
141.
Microsatellite diversity in European and Chinese pigs was assessed using a pooled sampling method on 52 European and 46 Chinese pig populations. A Neighbor Joining analysis on genetic distances revealed that European breeds were grouped together and showed little evidence for geographic structure, although a southern European and English group could tentatively be assigned. Populations from international breeds formed breed specific clusters. The Chinese breeds formed a second major group, with the Sino-European synthetic Tia Meslan in-between the two large clusters. Within Chinese breeds, in contrast to the European pigs, a large degree of geographic structure was noted, in line with previous classification schemes for Chinese pigs that were based on morphology and geography. The Northern Chinese breeds were most similar to the European breeds. Although some overlap exists, Chinese breeds showed a higher average degree of heterozygosity and genetic distance compared to European ones. Between breed diversity was even more pronounced and was the highest in the Central Chinese pigs, reflecting the geographically central position in China. Comparing correlations between genetic distance and heterozygosity revealed that China and Europe represent different domestication or breed formation processes. A likely cause is a more diverse wild boar population in Asia, but various other possible contributing factors are discussed.  相似文献   
142.

Background  

It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems.  相似文献   
143.
Measurements of chlorophyll fluorescence have been used to monitor electron transport from the primary electron acceptor of photosystem II, Q, to the secondary acceptor, B, in chloroplasts in either the presence or the absence of the plastoquinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Electron transport is markedly slower from Q? to either B or B? in the presence of DBMIB. Binary oscillations in the rate of reoxidation of Q? (equivalent to the reactions Q?B → QB? and Q?B? → QB2?) after each of a series of flashes were of a phase opposite to those observed in the absence of DBMIB (J. M. Bowes, and A. R. Crofts, (1980) Biochim. Biophys. Acta590, 573–584). The results confirm that inhibition of electron transport by DBMIB in chloroplasts is not restricted to an inhibition of electron transfer from the plastoquinone pool, but that there is also a specific interaction between the reduced form of the inhibitor and the secondary electron acceptor B. Models are discussed to account for the mechanism of this interaction.  相似文献   
144.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
145.
Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production.Starch is the most important carbohydrate storage material and contains the Glc polymers amylose and amylopectin. At least four classes of enzymes, ADP-Glc pyrophosphorylase (AGPase), starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), are necessary for efficient starch biosynthesis in storage tissues.SSs (EC 2.4.1.21) play a central role in starch synthesis during α-glucan elongation by adding Glc residues from ADP-Glc to the nonreducing ends via α-1,4-glucosidic linkages. Rice (Oryza sativa) contains 11 SS genes that are grouped into six classes, SSI to SSV and granule-bound starch synthase (GBSS; Supplemental Fig. S1; Hirose and Terao, 2004; Ohdan et al., 2005). Every class contains multiple isozymes, except for SSI and SSV; SSI, SSIIa, SSIIIa, and GBSSI are highly expressed in developing rice endosperm (Hirose and Terao, 2004; Ohdan et al., 2005). SSI elongates short amylopectin chains with degree of polymerization (DP) from 6 or 7 to DP 8 to 12 (Fujita et al., 2006). SSIIa elongates amylopectin from DP 6 to 12 to DP 13 to 24 (Umemoto et al., 2002; Nakamura et al., 2005), and SSIIIa elongates long amylopectin chains with DP 33 or greater (Fujita et al., 2007). GBSSI synthesizes amylose and extra-long amylopectin chains (Sano, 1984; Takeda et al., 1987; Hizukuri, 1995). The functions of other SS isozymes, such as SSIIb, SSIIc, SSIIIb, SSIVa, SSIVb, SSV, and GBSSII, remain largely unknown due to the lack of respective mutant lines. It is not clear how SS isozymes contribute to starch granule formation.Rice endosperm amyloplasts produce characteristic compound-type starch granules, which consist of dozens of polyhedral, sharp-edged granules (Matsushima et al., 2010). Compound-type starch granules are the most common type in endosperm of Poaceae species (Tateoka, 1962; Grass Phylogeny Working Group, 2001; Prasad et al., 2011; Matsushima et al., 2013). Simple-type starch granules (one starch granule per amyloplast) are produced in some species of the Bambusoideae, Pooideae, Micrairoideae, Chloridoideae, and Panicoideae subfamilies. The taxonomic relationships in the Poaceae do not enable an accurate prediction of granule morphology (Tateoka 1962; Shapter et al., 2008; Matsushima et al., 2013).Two studies that changed starch granule shape from simple type to compound type have been reported (Suh et al., 2004; Myers et al., 2011). A hull-less cultivar of cv Betzes barley (Hordeum vulgare), cv Nubet, contains simple-type and bimodal starch granules, which are typical of wild-type barley. Chemical mutagenesis of cv Nubet produced a mutant called franubet, which contains compound-type starch granules (Suh et al., 2004). In the maize monogalactosyldiacylglycerol synthase-deficient mutant opaque5, simple-type granules are replaced by compound-type granules separated by a membranous structure (Myers et al., 2011). The molecular mechanisms that control starch granule morphology in cereal endosperm are largely unknown, although an alteration in membrane lipid synthesis may be involved (Myers et al., 2011).A structural model for the compound-type amyloplast is shown Figure 1. The amyloplast envelope contains an outer envelope membrane (OEM), inner envelope membrane (IEM), and intermembrane space (IMS). Each starch granule is enclosed by an IEM, and granules are separated by a septum-like structure (SLS; Yun and Kawagoe, 2010). In this model, the IMS and SLS are directly connected, and fluorescent proteins such as GFP and Cherry can move freely between the two (Fig. 1; Kawagoe, 2013). The chloroplast envelope membrane contains little protein compared with the thylakoid membrane (Heber and Heldt, 1981). The endosperm amyloplast envelope membrane contains even less protein. Low protein content could be a major reason why the amyloplast envelope in rice endosperm is difficult to observe using high-resolution electron microscopy. In transgenic rice, a fluorescent protein fused to an IEM protein, the ADP-Glc transporter BRITTLE1, visualized the amyloplast IEM (Yun and Kawagoe, 2010). Fluorescent proteins fused to the chloroplast OEM protein OEP7 visualized the amyloplast OEM in endosperm (Kawagoe, 2013). These studies revealed that the outermost membranes of rice amyloplasts are OEM and contain intraamyloplast compartments. Starch is synthesized within the amyloplast compartments and is ultimately formed as compound-type granules that are individually wrapped in IEM (Yun and Kawagoe, 2010; Kawagoe, 2013).Open in a separate windowFigure 1.Structural model of the wild-type amyloplast in developing rice endosperm. The OEM is in black, the IEM is in magenta, the IMS is in green, and the SLS is in blue. G, Starch granules.Confocal microscopy analyses of the rice IEM protein, BRITTLE1, revealed that an SLS, or cross wall, divides starch granules in the amyloplast (Yun and Kawagoe, 2010). A model for the synthesis of compound-type starch granules consisting of polyhedral, sharp-edged granules proposed that the SLS functions as a mold that casts growing granules into a characteristic shape (Yun and Kawagoe, 2010; Kawagoe, 2013). The model postulates a central role for the SLS in producing characteristic compound-type granules, although neither the SLS components nor the enzymes affecting its properties have been characterized.Arabidopsis (Arabidopsis thaliana) SS genes are grouped into six classes. Leaf transitory starch biosynthesis has been investigated in single mutants of SSI, SSII, SSIII, and SSIV and in various double and triple SS mutants (Ral et al., 2004; Delvallé et al., 2005; Zhang et al., 2005, 2008; Szydlowski et al., 2009, 2011). Starch granules in leaf chloroplasts are reduced in number but enlarged in the ssIV mutant (Roldán et al., 2007; Crumpton-Taylor et al., 2013) and in the ssIV double and triple mutants (Szydlowski et al., 2009). Immature ssIV leaves have no starch granules but accumulate the starch synthase substrate ADP-Glc at high concentrations. Starch granules are flattened and discoid in wild-type leaves but are rounded in mature leaves of ssIV, suggesting that SSIV is essential for coordinating granule formation with chloroplast division during leaf expansion (Crumpton-Taylor et al., 2013). The ssIII ssIV double mutant does not accumulate measurable amounts of starch in the leaves, despite the presence of SSI and SSII activity (Szydlowski et al., 2009), implying that Arabidopsis SSIII and SSIV are involved in the initiation of starch granule formation and that either SSIII or SSIV is sufficient. Overexpression of AtSSIV increases the starch level in Arabidopsis leaves and potato (Solanum tuberosum) tubers (Gámez-Arjona et al., 2011). In transgenic plants, the AtSSIV-GFP fusion protein is enriched in specific regions at the edge of granules in Arabidopsis chloroplasts and potato tuber amyloplasts. In rice, SSIVa and SSIVb are expressed in the endosperm and other organs at an early developmental stage (Hirose and Terao, 2004; Ohdan et al., 2005).In this study, two rice allelic SSIVb-deficient mutant lines (ss4b) were generated by insertion of the retrotransposon Tos17 and crossed with the SSIIIa null mutant (ss3a). Surprisingly, the ss3a ss4b endosperm produced spherical starch granules that were separated from each other within amyloplasts, whereas the single mutants produced compound-type polyhedral starch granules. The SSIVb and GBSSI enzymes were localized to distinct compartments in developing amyloplasts. We discuss the changes in rice starch structure due to the deficiency of both SSIIIa and SSIVb, the alteration in starch granule morphology, and possible unconventional functions of SSIIIa and SSIVb. We also present a model of how spherical granules are produced in ss3a ss4b rice endosperm.  相似文献   
146.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   
147.
Linking variation in quantitative traits to variation in the genome is an important, butchallenging task in the study of life-history evolution. Linkage maps provide a valuabletool for the unravelling of such trait−gene associations. Moreover, they giveinsight into recombination landscapes and between-species karyotype evolution. Here weused genotype data, generated from a 10k single-nucleotide polymorphism (SNP) chip, ofover 2000 individuals to produce high-density linkage maps of the great tit (Parusmajor), a passerine bird that serves as a model species for ecological andevolutionary questions. We created independent maps from two distinct populations: acaptive F2-cross from The Netherlands (NL) and a wild population from the United Kingdom(UK). The two maps contained 6554 SNPs in 32 linkage groups, spanning 2010 cM and1917 cM for the NL and UK populations, respectively, and were similar in size andmarker order. Subtle levels of heterochiasmy within and between chromosomes wereremarkably consistent between the populations, suggesting that the local departures fromsex-equal recombination rates have evolved. This key and surprising result would have beenimpossible to detect if only one population was mapped. A comparison with zebra finchTaeniopygia guttata, chicken Gallus gallus and the green anole lizardAnolis carolinensis genomes provided further insight into the evolution ofavian karyotypes.  相似文献   
148.
Macquaridrilus mcmurtrieae n. sp. is described from Campbell Island. This resembles the only other species in the genus, Macquaridrilus bennettae Jamieson, 1968, in most aspects, but shows significant differences in the anatomy of its genitalia. In particular, the spermathecal pores are dorsal rather than lateral, the spermathecae lack diverticulae, the ejaculatory duct is more stout and muscular, the vas deferens is shorter relative to other organs and the anterior prostate is compact rather than elongate. The presence of a cuticular sperm canal appears to be an apomorphy for the genus. The new species was collected from streams and tarns across the island.

http://zoobank.org/urn:lsid:zoobank.org:pub:652AF61D-CFB2-4D07-94C8-59E6FB549D5F

http://zoobank.org/urn:lsid:zoobank.org:act:984F2456-768D-48A1-87AD-4453768BAB8A  相似文献   
149.
In a simulation study different designs for a pure line pig population were compared for efficiency of mapping QTL using the variance component method. Phenotypes affected by a Mendelian QTL, a paternally expressed QTL, a maternally expressed QTL or by a QTL without an effect were simulated. In all alternative designs 960 progeny were phenotyped. Given the limited number of animals there is an optimum between the number of families and the family size. Estimation of Mendelian and parentally expressed QTL is more efficient in a design with large family sizes. Too small a number of sires should be avoided to minimize chances of sires to be non-segregating. When a large number of families is used, the number of haplotypes increases which reduces the accuracy of estimating the QTL effect and thereby reduces the power to show a significant QTL and to correctly position the QTL. Dense maps allow for smaller family size due to exploitation of LD-information. Given the different possible modes of inheritance of the QTL using 8 to16 boars, two litters per dam was optimal with respect to determining significance and correct location of the QTL for a data set consisting of 960 progeny. The variance component method combining linkage disequilibrium and linkage analysis seems to be an appropriate choice to analyze data sets which vary in marker density and which contain complex family structures.  相似文献   
150.
The Falkland Islands currently supports one of the largest Southern Rockhopper Penguin (Eudyptes c. chrysocome) populations. Archipelago-wide censuses conducted in 2000 and 2005 revealed that the number of breeding pairs had declined by 30 % during this period. To establish whether the breeding population continued to decline, an archipelago-wide census was conducted in 2010. We report a conservative estimate of 319,163 ±SD 24,820 pairs breeding at the Falkland Islands in 2010. This represents a 51 % increase when compared with the number counted in 2005. A simple stochastic population model was developed to investigate the extent to which changes in demographic parameters between 2005 and 2010 could account for the increase in breeding pairs. The population model predicted a 38 % increase in the number of breeding pairs over a 5-year period (289,431 ±SD 24,615). The increase in the number of breeding pairs was therefore probably attributed to improved vital rates in the period between the 2005 and 2010 archipelago-wide censuses in combination with other factors such as a reduction in the proportion of adult birds that abstained from breeding. Based on the 2010 Falkland Islands estimate, the global population of the subspecies E. c. chrysocome is now closer to 870,000 breeding pairs of which the Falkland Islands accounts for approximately 36 %, the second largest proportion after Chile. We conclude that despite fluctuations, the number of Southern Rockhopper Penguins breeding at the Falkland Islands has increased over the last 15 years and suggest that the ‘Vulnerable’ conservation status of the species be re-assessed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号