首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   24篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   15篇
  2018年   11篇
  2017年   9篇
  2016年   24篇
  2015年   23篇
  2014年   24篇
  2013年   47篇
  2012年   51篇
  2011年   44篇
  2010年   27篇
  2009年   16篇
  2008年   40篇
  2007年   32篇
  2006年   24篇
  2005年   22篇
  2004年   17篇
  2003年   24篇
  2002年   26篇
  2001年   9篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1963年   1篇
排序方式: 共有580条查询结果,搜索用时 234 毫秒
111.
The vesicular soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) tetanus neurotoxin‐insensitive vesicle‐associated membrane protein (TI‐VAMP/VAMP7) was previously shown to mediate an exocytic pathway involved in neurite growth, but its regulation is still largely unknown. Here we show that TI‐VAMP interacts with the Vps9 domain and ankyrin‐repeat‐containing protein (Varp), a guanine nucleotide exchange factor (GEF) of the small GTPase Rab21, through a specific domain herein called the interacting domain (ID). Varp, TI‐VAMP and Rab21 co‐localize in the perinuclear region of differentiating hippocampal neurons and transiently in transport vesicles in the shaft of neurites. Silencing the expression of Varp by RNA interference or expressing ID or a form of Varp deprived of its Vps9 domain impairs neurite growth. Furthermore, the mutant form of Rab21, defective in GTP hydrolysis, enhances neurite growth. We conclude that Varp is a positive regulator of neurite growth through both its GEF activity and its interaction with TI‐VAMP.  相似文献   
112.
Nonomuraea sp. ATCC 39727 belongs to the Streptosporangiaceae family of filamentous actinomycetes. This microorganism produces the teicoplanin-like glycopeptide A40926, which is the starting material for the synthesis of the second-generation glycopeptide dalbavancin. Notwithstanding the strain’s pharmaceutical relevance, the lack or poor efficiency of genetic tools to manipulate Nonomuraea sp. ATCC 39727 has hampered strain and product improvement. Here we report the development of gene transfer systems based on protoplast transformation and intergeneric conjugation from Escherichia coli. Efficiency of transformation and conjugation, followed by site specific or homologous recombination with the Nonomuraea sp. genome, were determined using the integrative plasmid pSET152 (5.7 kb), and the Supercos1 derivative cosmid A40ΔY (30 kb). To our knowledge, this is the first report of the transformation of protoplasts of Nonomuraea sp. ATCC 39727, even though the improved procedure for intergeneric conjugation makes it the method of choice for introducing large segments of DNA into Nonomuraea sp. ATCC 39727.  相似文献   
113.
The inheritance of DNA methylation patterns is a popular theory to explain the influence of parental genetic and environmental factors on the phenotype of their offspring but few studies have examined this relationship in humans. Using 120 paired maternal-umbilical cord blood samples randomly selected from a prospective birth cohort in Bangladesh, we quantified DNA methylation by pyrosequencing seven CpG positions in the promoter region of p16, four CpG positions in the promoter region of p53, LINE-1 and Alu. Positive correlations were observed between maternal and umbilical cord blood at p16, LINE-1, and Alu but not p53. Multiple linear regression models observed a significant association between maternal and umbilical cord blood at LINE-1 and Alu (LINE-1: β = 0.63, p<0.0001; Alu: β = 0.28, p = 0.009). After adjusting for multiple comparisons, maternal methylation of p16 at position 4 significantly predicted methylation at the same position in umbilical cord blood (β = 0.43, p = <0.0001). These models explained 48%, 5% and 16% of the observed variability in umbilical cord %5mC for LINE-1, Alu and p16 at position 4, respectively. These results suggest that DNA methylation in maternal blood was correlated with her offspring at LINE-1, Alu, and p16 but not p53. Additional studies are needed to confirm whether these observed associations were due to the inheritance of epigenetic events or the shared environment between mother and fetus. Future studies should also use a multi-generational family-based design that would quantify both maternal and paternal contributions to DNA methylation in offspring across more than one generation.  相似文献   
114.
115.
Fabbretti A  Gualerzi CO  Brandi L 《FEBS letters》2011,585(11):1673-1681
Since their introduction in therapy, antibiotics have played an essential role in human society, saving millions of lives, allowing safe surgery, organ transplants, cancer therapy. Antibiotics have also helped to elucidate several biological mechanisms and boosted the birth and growth of pharmaceutical companies, generating profits and royalties. The golden era of antibiotics and the scientific and economical drive of big pharma towards these molecules is long gone, but the need for effective antibiotics is increased as their pipelines dwindle and multi-resistant pathogenic strains spread. Here we outline some strategies that could help meet this emergency and list promising new targets.  相似文献   
116.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   
117.
118.
119.
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.  相似文献   
120.

Background

During the past decades, neutral DNA markers have been extensively employed to study demography, population genetics and structure in livestock, but less interest has been devoted to the evaluation of livestock adaptive potential through the identification of genomic regions likely to be under natural selection.

Methodology/Principal findings

Landscape genomics can greatly benefit the entire livestock system through the identification of genotypes better adapted to specific or extreme environmental conditions. Therefore we analyzed 101 AFLP markers in 43 European and Western Asian goat breeds both with Matsam software, based on a correlative approach (SAM), and with Mcheza and Bayescan, two FST based software able to detect markers carrying signatures of natural selection.Matsam identified four loci possibly under natural selection – also confirmed by FST-outlier methods – and significantly associated with environmental variables such as diurnal temperature range, frequency of precipitation, relative humidity and solar radiation.

Conclusions/Significance

These results show that landscape genomics can provide useful information on the environmental factors affecting the adaptive potential of livestock living in specific climatic conditions. Besides adding conservation value to livestock genetic resources, this knowledge may lead to the development of novel molecular tools useful to preserve the adaptive potential of local breeds during genetic improvement programs, and to increase the adaptability of industrial breeds to changing environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号