首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9158篇
  免费   586篇
  国内免费   3篇
  2023年   58篇
  2022年   118篇
  2021年   245篇
  2020年   149篇
  2019年   162篇
  2018年   308篇
  2017年   242篇
  2016年   342篇
  2015年   510篇
  2014年   573篇
  2013年   736篇
  2012年   833篇
  2011年   816篇
  2010年   499篇
  2009年   425篇
  2008年   569篇
  2007年   494篇
  2006年   510篇
  2005年   423篇
  2004年   354篇
  2003年   347篇
  2002年   358篇
  2001年   66篇
  2000年   54篇
  1999年   54篇
  1998年   101篇
  1997年   72篇
  1996年   48篇
  1995年   36篇
  1994年   40篇
  1993年   28篇
  1992年   30篇
  1991年   21篇
  1990年   18篇
  1989年   16篇
  1988年   15篇
  1987年   4篇
  1986年   3篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有9747条查询结果,搜索用时 15 毫秒
891.
892.
893.
Seventy-six 2-phenylbenzimidazole derivatives were synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. The most commonly affected viruses were, in decreasing order, CVB-2, BVDV, Sb-1, HSV-1, and YFV, while HIV-1 and VSV were not affected, and RSV, VV and Reo-1 were only susceptible to a few compounds. Thirty-nine compounds exhibited high activity (EC50 = 0.1–10 μM) against at least one virus, and four of them were outstanding for their high and selective activity against VV (24, EC50 = 0.1 μM) and BVDV (50, 51, and 53 with EC50 = 1.5, 0.8, and 1.0 μM, respectively). The last compounds inhibited at low micromolar concentrations the NS5B RdRp of BVDV and also of HCV, the latter sharing structural similarity with the former. The considered compounds represent attractive leads for the development of antiviral agents against poxviruses, pestiviruses and even HCV, which are important human and veterinary pathogens.  相似文献   
894.

Background

The aim of this work was to study the effects on litter size of variants of the porcine genes RBP4, ESR1 and IGF2, currently used in genetic tests for different purposes. Moreover, we investigated a possible effect of the interaction between RBP4-MspI and ESR1-PvuII polymorphisms. The IGF2-intron3-G3072A polymorphism is actually used to select lean growth, but other possible effects of this polymorphism on reproductive traits need to be evaluated.

Methods

Detection of polymorphisms in the genomic and cDNA sequences of RBP4 gene was carried out. RBP4-MspI and IGF2-intron3-G3072A were genotyped in a hyperprolific Chinese-European line (Tai-Zumu) and three new RBP4 polymorphisms were genotyped in different pig breeds. A bivariate animal model was implemented in association analyses considering the number of piglets born alive at early (NBA12) and later parities (NBA3+ ) as different traits. A joint analysis of RBP4-MspI and ESR1-PvuII was performed to test their possible interaction. In the IGF2 analysis, paternal or maternal imprinting effects were also considered.

Results

Four different RBP4 haplotypes were detected (TGAC, GGAG, GAAG and GATG) in different pig breeds and wild boars. A significant interaction effect between RBP4-MspI and ESR1-PvuII polymorphisms of 0.61 ± 0.29 piglets was detected on NBA3+. The IGF2 analysis revealed a significant increase on NBA3+ of 0.74 ± 0.37 piglets for the paternally inherited allele A.

Conclusions

All the analyzed pig and wild boar populations shared one of the four detected RBP4 haplotypes. This suggests an ancestral origin of the quoted haplotype. The joint use of RBP4-MspI and ESR1-PvuII polymorphisms could be implemented to select for higher prolificacy in the Tai-Zumu line. In this population, the paternal allele IGF2-intron3-3072A increased litter size from the third parity. The non-additive effects on litter size reported here should be tested before implementation in other pig breeding schemes.  相似文献   
895.
896.
897.
Release of neurotransmitter is activated by the influx of calcium. Inhibition of Ca2+ channels results in less calcium influx into the terminals and presumably a reduction in transmitter release. In the neurohypophysis (NH), Ca2+ channel kinetics, and the associated Ca2+ influx, is primarily controlled by membrane voltage and can be modulated, in a voltage‐dependent manner, by G‐protein subunits interacting with voltage‐gated calcium channels (VGCCs). In this series of experiments we test whether the κ‐ and µ‐opioid inhibition of Ca2+ currents in NH terminals is voltage‐dependent. Voltage‐dependent relief of G‐protein inhibition of VGCC can be achieved with either a depolarizing square pre‐pulse or by action potential waveforms. Both protocols were tested in the presence and absence of opioid agonists targeting the κ‐ and µ‐receptors in neurohypophysial terminals. The κ‐opioid VGCC inhibition is relieved by such pre‐pulses, suggesting that this receptor is involved in a voltage‐dependent membrane delimited pathway. In contrast, µ‐opioid inhibition of VGCC is not relieved by such pre‐pulses, indicating a voltage‐independent diffusible second‐messenger signaling pathway. Furthermore, relief of κ‐opioid inhibition during a physiologic action potential (AP) burst stimulation indicates the possibility of activity‐dependent modulation in vivo. Differences in the facilitation of Ca2+ channels due to specific G‐protein modulation during a burst of APs may contribute to the fine‐tuning of Ca2+‐dependent neuropeptide release in other CNS terminals, as well. J. Cell. Physiol. 225: 223–232, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
898.
899.
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues, with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However, the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper, we report that suppression of mitogen-induced T cell proliferation by human UC-, bone marrow-, and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation, indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays, an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore, we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation.  相似文献   
900.
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号