首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12165篇
  免费   932篇
  国内免费   4篇
  2023年   60篇
  2022年   142篇
  2021年   312篇
  2020年   189篇
  2019年   228篇
  2018年   377篇
  2017年   301篇
  2016年   422篇
  2015年   642篇
  2014年   719篇
  2013年   895篇
  2012年   1033篇
  2011年   974篇
  2010年   600篇
  2009年   517篇
  2008年   714篇
  2007年   618篇
  2006年   627篇
  2005年   553篇
  2004年   454篇
  2003年   450篇
  2002年   450篇
  2001年   162篇
  2000年   154篇
  1999年   141篇
  1998年   142篇
  1997年   108篇
  1996年   90篇
  1995年   70篇
  1994年   76篇
  1993年   59篇
  1992年   96篇
  1991年   74篇
  1990年   80篇
  1989年   57篇
  1988年   55篇
  1987年   44篇
  1986年   31篇
  1985年   47篇
  1984年   27篇
  1983年   39篇
  1982年   42篇
  1981年   32篇
  1980年   20篇
  1979年   29篇
  1977年   21篇
  1976年   15篇
  1975年   13篇
  1973年   11篇
  1968年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain–containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17–positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4–treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.  相似文献   
992.
Exosomes are secreted vesicles arising from the fusion of multivesicular bodies (MVBs) with the plasma membrane. Despite their importance in various processes, the molecular mechanisms controlling their formation and release remain unclear. Using nematodes and mammary tumor cells, we show that Ral GTPases are involved in exosome biogenesis. In Caenorhabditis elegans, RAL-1 localizes at the surface of secretory MVBs. A quantitative electron microscopy analysis of RAL-1–deficient animals revealed that RAL-1 is involved in both MVB formation and their fusion with the plasma membrane. These functions do not involve the exocyst complex, a common Ral guanosine triphosphatase (GTPase) effector. Furthermore, we show that the target membrane SNARE protein SYX-5 colocalizes with a constitutively active form of RAL-1 at the plasma membrane, and MVBs accumulate under the plasma membrane when SYX-5 is absent. In mammals, RalA and RalB are both required for the secretion of exosome-like vesicles in cultured cells. Therefore, Ral GTPases represent new regulators of MVB formation and exosome release.  相似文献   
993.
994.
Septic shock is a leading cause of death, and it results from an inflammatory cascade triggered by the presence of microbial products in the blood. Certain LPS from Gram-negative bacteria are very potent inducers and are responsible for a high percentage of septic shock cases. Despite decades of research, mAbs specific for lipid A (the endotoxic principle of LPS) have not been successfully developed into a clinical treatment for sepsis. To understand the molecular basis for the observed inability to translate in vitro specificity for lipid A into clinical potential, the structures of antigen-binding fragments of mAbs S1–15 and A6 have been determined both in complex with lipid A carbohydrate backbone and in the unliganded form. The two antibodies have separate germ line origins that generate two markedly different combining-site pockets that are complementary both in shape and charge to the antigen. mAb A6 binds lipid A through both variable light and heavy chain residues, whereas S1–15 utilizes exclusively the variable heavy chain. Both antibodies bind lipid A such that the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains the lack of LPS recognition. Longstanding reports of polyspecificity of anti-lipid A antibodies toward single-stranded DNA combined with observed homology of S1–15 and A6 and the reports of several single-stranded DNA-specific mAbs prompted the determination of the structure of S1–15 in complex with single-stranded DNA fragments, which may provide clues about the genesis of autoimmune diseases such as systemic lupus erythematosus, thyroiditis, and rheumatic autoimmune diseases.  相似文献   
995.
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins in multicellular organisms. O-GlcNAc modification is catalyzed by the O-GlcNAc transferase (OGT), which transfers N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor UDP-GlcNAc to serine or threonine residues of protein substrates. Recently, we reported a novel metabolic labeling method to introduce the diazirine photocross-linking functional group onto O-GlcNAc residues in mammalian cells. In this method, cells are engineered to produce diazirine-modified UDP-GlcNAc (UDP-GlcNDAz), and the diazirine-modified GlcNAc analog (GlcNDAz) is transferred to substrate proteins by endogenous OGT, producing O-GlcNDAz. O-GlcNDAz-modified proteins can be covalently cross-linked to their binding partners, providing information about O-GlcNAc-dependent interactions. The utility of the method was demonstrated by cross-linking highly O-GlcNAc-modified nucleoporins to proteins involved in nuclear transport. For practical application of this method to a broader range of O-GlcNAc-modified proteins, efficient O-GlcNDAz production is critical. Here we examined the ability of OGT to transfer GlcNDAz and found that the wild-type enzyme (wtOGT) prefers the natural substrate, UDP-GlcNAc, over the unnatural UDP-GlcNDAz. This competition limits O-GlcNDAz production in cells and the extent of O-GlcNDAz-dependent cross-linking. Here we identified an OGT mutant, OGT(C917A), that efficiently transfers GlcNDAz and, surprisingly, has altered substrate specificity, preferring to transfer GlcNDAz rather than GlcNAc to protein substrates. We confirmed the reversed substrate preference by determining the Michaelis-Menten parameters describing the activity of wtOGT and OGT(C917A) with both UDP-GlcNAc and UDP-GlcNDAz. Use of OGT(C917A) enhances O-GlcNDAz production, yielding improved cross-linking of O-GlcNDAz-modified molecules both in vitro and in cells.  相似文献   
996.
997.
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.  相似文献   
998.
999.
1000.
When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号