首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9094篇
  免费   583篇
  国内免费   3篇
  9680篇
  2024年   3篇
  2023年   64篇
  2022年   119篇
  2021年   245篇
  2020年   148篇
  2019年   162篇
  2018年   307篇
  2017年   238篇
  2016年   340篇
  2015年   503篇
  2014年   570篇
  2013年   726篇
  2012年   827篇
  2011年   813篇
  2010年   497篇
  2009年   424篇
  2008年   568篇
  2007年   493篇
  2006年   507篇
  2005年   421篇
  2004年   354篇
  2003年   346篇
  2002年   353篇
  2001年   63篇
  2000年   54篇
  1999年   54篇
  1998年   100篇
  1997年   72篇
  1996年   48篇
  1995年   36篇
  1994年   40篇
  1993年   28篇
  1992年   29篇
  1991年   18篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有9680条查询结果,搜索用时 15 毫秒
121.
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.  相似文献   
122.
Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.  相似文献   
123.

Objective

The use of pictorial warning labels on cigarette packages is one of the provisions included in the first ever global health treaty by the World Health Organization against the tobacco epidemic. There is substantial evidence demonstrating the effectiveness of graphic health warning labels on intention to quit, thoughts about health risks and engaging in cessation behaviors. However, studies that address the implicit emotional drives evoked by such warnings are still underexplored. Here, we provide experimental data for the use of pictorial health warnings as a reliable strategy for tobacco control.

Methods

Experiment 1 pre-tested nineteen prototypes of pictorial warnings to screen for their emotional impact. Participants (n = 338) were young adults balanced in gender, smoking status and education. Experiment 2 (n = 63) tested pictorial warnings (ten) that were stamped on packs. We employed an innovative set-up to investigate the impact of the warnings on the ordinary attitude of packs’ manipulation, and quantified judgments of warnings’ emotional strength and efficacy against smoking.

Findings

Experiment 1 revealed that women judged the warning prototypes as more aversive than men, and smokers judged them more aversive than non-smokers. Participants with lower education judged the prototypes more aversive than participants with higher education. Experiment 2 showed that stamped warnings antagonized the appeal of the brands by imposing a cost to manipulate the cigarette packs, especially for smokers. Additionally, participants’ judgments revealed that the more aversive a warning, the more it is perceived as effective against smoking.

Conclusions

Health warning labels are one of the key components of the integrated approach to control the global tobacco epidemic. The evidence presented in this study adds to the understanding of how implicit responses to pictorial warnings may contribute to behavioral change.  相似文献   
124.
Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA).We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp) family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR) efflux transporter family.Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration.In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.  相似文献   
125.
126.
127.

Background

The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD.

Methods and Findings

By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs.The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors.

Conclusion

This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.  相似文献   
128.
Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号