首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9940篇
  免费   624篇
  国内免费   3篇
  10567篇
  2024年   4篇
  2023年   65篇
  2022年   122篇
  2021年   255篇
  2020年   161篇
  2019年   170篇
  2018年   317篇
  2017年   254篇
  2016年   365篇
  2015年   532篇
  2014年   620篇
  2013年   778篇
  2012年   885篇
  2011年   869篇
  2010年   540篇
  2009年   449篇
  2008年   616篇
  2007年   539篇
  2006年   535篇
  2005年   454篇
  2004年   394篇
  2003年   388篇
  2002年   380篇
  2001年   82篇
  2000年   65篇
  1999年   69篇
  1998年   107篇
  1997年   80篇
  1996年   53篇
  1995年   42篇
  1994年   50篇
  1993年   39篇
  1992年   39篇
  1991年   27篇
  1990年   26篇
  1989年   24篇
  1988年   14篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1977年   7篇
  1971年   5篇
  1969年   7篇
  1854年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   
103.
Cannabinoids, the active components of Cannabis sativa (marijuana) and their endogenous counterparts, exert their effects by binding to specific G-protein-coupled receptors that modulate adenylyl cyclase and ion channels. Recent research has shown that the CB1 cannabinoid receptor is also coupled to the generation of the lipid second messenger ceramide via two different pathways: sphingomyelin hydrolysis and ceramide synthesis de novo. Sustained ceramide accumulation in tumor cells mediates cannabinoid-induced apoptosis, as evidenced by in vitro and in vivo studies. This effect seems to be due to the impact of ceramide on key cell signalling systems such as the extracellular signal-regulated kinase cascade and the Akt pathway. These findings provide a new conceptual view on how cannabinoids act, and raise interesting physiological and therapeutic questions.  相似文献   
104.
CD38 has been widely characterised both as an ectoenzyme and as a receptor. In the present paper, we investigated the role of CD38 as possible modulator of apoptosis. CD38-positive (CD38(+)) and negative (CD38(-)) fractions, obtained by sorting CD38(+) cells from lymphoma T (Jurkat) and lymphoma B (Raji) and by transfecting lymphoma LG14 and myeloid leukemia K562 cell lines, were used. Cellular subpopulations were exposed to different triggers (H(2)O(2), UV-B, alpha-TOS and hrTRAIL) and the extent of apoptosis was determined by Annexin V-FITC/PI assay. Our data showed that, in lymphoma cells, propensity to apoptosis was significantly linked to CD38 expression and that, remarkably, such response was independent of the nature of the trigger used. Inhibition of CD38 expression by antisense oligonucleotides treatment resulted in CD38-silenced fractions which were as prone to apoptosis as CD38(-) ones. Notably, susceptibility of K562 to apoptosis-inducing challenges was not affected by CD38 expression.  相似文献   
105.
A wealth of evidence supports the broad therapeutic potential of NF‐κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF‐κB and the NF‐κB interacting long non‐coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non‐canonical actions of EZH2 on the regulation of NF‐κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non‐transformed breast epithelial cells, triple negative MDA‐MB‐231 cells and hormone responsive MCF‐7 cells, and measured changes in EZH2/NF‐κB/NKILA levels to confirm their interdependence. We demonstrate cell line‐specific fluctuations in these factors that functionally contribute to epithelial‐to‐mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA‐MB‐231 cell motility and CDK4‐mediated MCF‐7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non‐transformed cells. Notably, these events are mediated by a cell‐context dependent gain or loss of NKILA and NF‐κB. Depletion of NF‐κB in non‐transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF‐κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.  相似文献   
106.
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.  相似文献   
107.
Decolourisation of the azo dye Reactive Black 5 by Geotrichum sp. CCMI 1019 was studied using stirred tank reactors (STR) and two types of bubble columns (porous plate (PP) bubble column and aeration tube (AT) bubble column). For the bubble columns, the kLa increased with the gas fractional hold-up (εG) and the aeration rate. A linear relationship between εG and superficial gas velocity was obtained for all reactors. At same aeration rates, the PP bubble columns showed higher kLa and hold-up values than the AT bubble column. In the STRs, large and dense aggregates were formed which adhered to surfaces whereas bubble columns gave smaller and less compact pellets.

Manganese peroxidase and laccase were detected in the extracellular media in all reactors. However, laccase was only detected after the onset of decolourisation, suggesting that additional enzymes may be involved. Mn peroxidase activity was detected (about 46 U/ml) in both the STRs and AT bubble columns but higher values (110 U/ml) were obtained with the PP bubble columns.

Out of the three reactor systems studied, the AT bubble columns gave the most favourable results for Reactive Black 5 decolourisation. Rapid and complete colour removal was obtained throughout the visible spectrum. Bubble columns are simple in design as well as operation and may be useful for the bioremediation of textile wastewater.  相似文献   
108.
109.
Random network models have been a popular tool for investigating cortical network dynamics. On the scale of roughly a cubic millimeter of cortex, containing about 100,000 neurons, cortical anatomy suggests a more realistic architecture. In this locally connected random network, the connection probability decreases in a Gaussian fashion with the distance between neurons. Here we present three main results from a simulation study of the activity dynamics in such networks. First, for a broad range of parameters these dynamics exhibit a stationary state of asynchronous network activity with irregular single-neuron spiking. This state can be used as a realistic model of ongoing network activity. Parametric dependence of this state and the nature of the network dynamics in other regimes are described. Second, a synchronous excitatory stimulus to a fraction of the neurons results in a strong activity response that easily dominates the network dynamics. And third, due to that activity response an embedding of a divergent-convergent feed-forward subnetwork (as in synfire chains) does not naturally lead to a stable propagation of synchronous activity in the subnetwork; this is in contrast to our earlier findings in isolated subnetworks of that type. Possible mechanisms for stabilizing the interplay of volleys of synchronous spikes and network dynamics by specific learning rules or generalizations of the subnetworks are discussed.  相似文献   
110.
Huntington and Parkinson diseases (HD and PD) are two major neurodegenerative disorders pathologically characterized by the accumulation of the aggregate-prone proteins mutant huntingtin (in HD) and α-synuclein (in PD). Mutant huntingtin is an autophagy substrate and autophagy modulators affect HD pathology both in vitro and in vivo. In vitro, α-synuclein levels are able to modulate autophagy: α-synuclein overexpression inhibits autophagy, whereas downregulation promotes autophagy. Here, we review our recent studies showing that α-synuclein levels modulate mutant huntingtin toxicity in mouse models. This phenotypic modification is accompanied by the in vivo modulation of autophagosome numbers in mouse brains from both control and HD mice expressing different levels of α-synuclein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号