首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   62篇
  2024年   1篇
  2023年   10篇
  2022年   10篇
  2021年   22篇
  2020年   20篇
  2019年   14篇
  2018年   22篇
  2017年   22篇
  2016年   24篇
  2015年   53篇
  2014年   46篇
  2013年   64篇
  2012年   85篇
  2011年   74篇
  2010年   36篇
  2009年   35篇
  2008年   39篇
  2007年   54篇
  2006年   63篇
  2005年   27篇
  2004年   34篇
  2003年   21篇
  2002年   28篇
  2001年   11篇
  2000年   5篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有886条查询结果,搜索用时 31 毫秒
51.
This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles.  相似文献   
52.
Curcumin derivatives with high chemical stability, improved solubility and carrying a functionalized appendage for the linkage to other entities, have been synthesized in a straightforward manner. All compounds retained Curcumin ability to bind Aβ peptide oligomers without inducing their aggregation. Moreover all Curcumin derivatives were able to stain very efficiently Aβ deposits.  相似文献   
53.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   
54.
Marine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) 35S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface. Our data have thus clarified the relevance of sulfated polysaccharides in this system of in vitro sponge cell aggregation. The molecular basis of this system has practical relevance, since the culture of sponge cells is necessary for the production of molecules with biotechnological applications.  相似文献   
55.

Background  

microRNAs (miRNAs) are small single-stranded non-coding RNAs that act as crucial regulators of gene expression. Different methods have been developed for miRNA expression profiling in order to better understand gene regulation in normal and pathological conditions. miRNAs expression values obtained from large scale methodologies such as microarrays still need a validation step with alternative technologies.  相似文献   
56.
Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels.  相似文献   
57.
58.
One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (~30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked.  相似文献   
59.
Emphysema is a chronic lung disease characterized by alveolar enlargement and tissue loss. Tissue engineering represents an attractive potential for regeneration of several organ systems. The complex three-dimensional architectural structure of lung parenchyma requiring connections of alveolar units to airways and the pulmonary circulation makes this strategy less optimistic. In the present study, we used Gelfoam sponge as a scaffold material, supplemented with fetal rat lung cells as progenitors, to explore the potential application of cell-based tissue engineering for lung regeneration in adult rats. After injection into lung parenchyma, the sponge showed porous structures similar to alveolar units. It did not induce severe local inflammatory response. Fetal lung cells in the sponge were able to survive in the adult lung for at least 35 days, determined by CMTMR [5-(and-6)-{[(4-chloromethyl)benzoyl]amino}tetramethylrhodamine] labeling. Proliferation of cells within the sponge was demonstrated in vivo by bromodeoxyuridine (BrdU) labeling. Cells formed "alveolar-like structures" at the border between the sponge and the surrounding lung tissue with positive immunohistochemical staining for epithelial and endothelial cells. Neovascularization of the sponge was demonstrated with India ink perfusion. The sponge degraded after several months. This study suggests that cell-based tissue engineering possesses the potential to regenerate alveolar-like structures, an important step towards our ultimate goal of lung regeneration.  相似文献   
60.
This experimental study aimed to evaluate colon healing after portal ischemia followed by reperfusion. Seventy male Wistar rats randomly distributed in four groups were used: Group 1, colonic anastomosis (n = 20); Group 2, portal ischemia-reperfusion (n = 20); Group 3, colonic anastomosis and portal ischemia-reperfusion (n = 20); and Group 4, control (n = 10). In the postoperative period, these rats were re-allocated into subgroups and lipid peroxidation and protein oxidation plasma levels were evaluated on days 1 and 5 by thiobarbituric acid reactive substances (TBARS) and slot-blotting assays, respectively. A segment of the right colon was also removed for collagen analysis. Both malondialdehyde (MDA) and protein carbonyl levels (oxidative markers of lipids and proteins) presented a significant increase after reperfusion in Group 3 on days 1 (P < 0.002) and 5 (P < 0.0001). In this same group, an extensive inflammatory process showing decreased fibroplasia was observed, with deficiency in collagen deposition on both sides of the anastomosis edges. Taken together, these results indicate that portal congestion followed by reperfusion induces an oxidative stress, which impaired the mechanism of colon anastomotic healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号