首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6901篇
  免费   501篇
  国内免费   1篇
  7403篇
  2023年   28篇
  2022年   82篇
  2021年   150篇
  2020年   93篇
  2019年   156篇
  2018年   203篇
  2017年   159篇
  2016年   258篇
  2015年   328篇
  2014年   419篇
  2013年   498篇
  2012年   546篇
  2011年   505篇
  2010年   329篇
  2009年   278篇
  2008年   413篇
  2007年   375篇
  2006年   307篇
  2005年   308篇
  2004年   317篇
  2003年   280篇
  2002年   249篇
  2001年   103篇
  2000年   80篇
  1999年   73篇
  1998年   54篇
  1997年   40篇
  1996年   58篇
  1995年   34篇
  1994年   34篇
  1993年   33篇
  1992年   57篇
  1991年   48篇
  1990年   43篇
  1989年   34篇
  1988年   39篇
  1987年   29篇
  1986年   28篇
  1985年   31篇
  1984年   19篇
  1983年   31篇
  1982年   26篇
  1981年   24篇
  1980年   23篇
  1979年   18篇
  1977年   18篇
  1976年   15篇
  1975年   19篇
  1974年   17篇
  1972年   15篇
排序方式: 共有7403条查询结果,搜索用时 15 毫秒
991.
992.
993.
Genotoxicity of diphenyl diselenide in bacteria and yeast   总被引:2,自引:0,他引:2  
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. This may increase the risk of human exposure to the chemical at the workplace. We have determined its mutagenic potential in the Salmonella/microsome assay and used the yeast Saccharomyces cerevisiae to assay for putative genotoxicity, recombinogenicity and to determine whether DNA damage produced by DPDS is repairable. Only in exponentially growing cultures was DPDS able to induce frameshift mutations in S. typhimurium and haploid yeast and to increase crossing over and gene conversion frequencies in diploid strains of S. cerevisiae. Thus, DPDS presents a behavior similar to that of an intercalating agent. Mutants defective in excision-resynthesis repair (rad3, rad1), in error-prone repair (rad6) and in recombinational repair (rad52) showed higher than WT-sensitivity to DPDS. It appears that this compound is capable of inducing single and/or double strand breaks in DNA. An epistatic interaction was shown between rad3-e5 and rad52-1 mutant alleles, indicating that excision-resynthesis and strand-break repair may possess common steps in the repair of DNA damage induced by DPDS. DPDS was able to enhance the mutagenesis induced by oxidative mutagens in bacteria. N-acetylcysteine, a glutathione biosynthesis precursor, prevented mutagenesis induced by DPDS in yeast. We have shown that DPDS is a weak mutagen which probably generates DNA strand breaks through both its intercalating action and pro-oxidant effect.  相似文献   
994.
Plasma membranes in eukaryotic cells display asymmetric lipid distributions with aminophospholipids concentrated in the inner leaflet and sphingolipids in the outer leaflet. This unequal distribution of lipids between leaflets is, amongst several proposed functions, hypothesized to be a prerequisite for endocytosis. P4 ATPases, belonging to the P-type ATPase superfamily of pumps, are involved in establishing lipid asymmetry across plasma membranes, but P4 ATPases have not been identified in plant plasma membranes. Here we report that the plant P4 ATPase ALA1, which previously has been connected with cold tolerance of Arabidopsis thaliana, is targeted to the plasma membrane and does so following association in the endoplasmic reticulum with an ALIS protein β-subunit.  相似文献   
995.
996.
997.

Background

Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer''s Disease (AD) that led to an impaired and dysfunctional response to stressors.

Methodology/Principal Findings

Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that beta-amyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1α and metallothionein 2A.

Conclusions/Significance

These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.  相似文献   
998.
Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.  相似文献   
999.
By confocal microscopy, we analyzed microtubule (Mt) behavior during hyphal growth and branching in a Neurospora crassa strain whose Mts had been tagged with GFP. Images were assembled spatially and temporally to better understand the 3-D organization of the microtubular cytoskeleton and a clearer view of its dynamics. Cytoplasmic Mts were mainly arranged longitudinally along the hyphal tube. Straight segments were rare; most Mts showed a distinct helical curvature with a long pitch and a tendency to intertwine with one another to form a loosely braided network throughout the cytoplasm. This study revealed that the microtubular cytoskeleton of a hypha advances as a unit, i.e., as the cell elongates, it moves forward by bulk flow. Nuclei appeared trapped in the microtubular network and were carried forward in unison as the hypha elongated. During branching, one or more cortical Mts became associated with the incipient branch and were pulled into the emergence of the branch. As extension of the branch and distortion of the Mts continued, Mts soon were severed with both new Mt ends (+ and -) present in the new branch. Although the exact mechanisms for addition Mt recruitment into the branch remains an open question, the recorded evidence indicates both bulk insertion of established cortical parent-hypha Mts as well as in situ polymerization were involved. The latter conclusion was supported by FRAP studies showing evidence of Mt nucleation and polymerization assembly in the growing tip of the developing branch. Nuclei entered the branch entrapped in the advancing network of Mts.  相似文献   
1000.
Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号