首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   113篇
  1336篇
  2024年   3篇
  2023年   10篇
  2022年   23篇
  2021年   48篇
  2020年   32篇
  2019年   32篇
  2018年   53篇
  2017年   48篇
  2016年   56篇
  2015年   97篇
  2014年   81篇
  2013年   98篇
  2012年   116篇
  2011年   119篇
  2010年   78篇
  2009年   49篇
  2008年   73篇
  2007年   61篇
  2006年   52篇
  2005年   49篇
  2004年   50篇
  2003年   34篇
  2002年   38篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1975年   1篇
  1968年   1篇
排序方式: 共有1336条查询结果,搜索用时 15 毫秒
51.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   
52.
Acrylonitrile (AN) is a vinyl monomer used in the production of synthetic fibers, rubber and plastics. AN is acutely toxic but its mechanism of toxicity remains to be established. AN is metabolized to cyanide in vivo but cyanide production alone cannot explain acute AN toxicity. Previous work in our laboratory has shown that AN can alkylate highly reactive cysteine residues in proteins. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a critical enzyme involved in glycolysis, has a catalytically active cysteine 149 in its active site. We report that AN irreversibly inhibits GAPDH with second-order rate constants, at pH 7.4, of 3.7 and 9.2 M−1 s−1 at 25 and 37 °C, respectively. A combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and electrospray ionization–mass spectrometry–mass spectrometry (ESI–MS–MS) was used to show that AN inactivates GAPDH by covalently binding to cysteine 149 in the active site of the enzyme. Inactivation of GAPDH by AN would be expected to impair glycolytic ATP production and when coupled with the inhibition of mitochondrial ATP synthesis by the AN metabolite cyanide would result in metabolic arrest. The brain can withstand metabolic arrest for only a few minutes thus these combined actions may account for the acute toxicity of AN in vivo.  相似文献   
53.
A vector based on Semliki Forest virus (SFV) expressing high levels of interleukin-12 (SFV-enhIL-12) has previously demonstrated potent antitumoral efficacy in small rodents with hepatocellular carcinoma (HCC) induced by transplantation of tumor cells. In the present study, the infectivity and antitumoral/antiviral effects of SFV vectors were evaluated in the clinically more relevant woodchuck model, in which primary HCC is induced by chronic infection with woodchuck hepatitis virus (WHV). Intratumoral injection of SFV vectors expressing luciferase or IL-12 resulted in high reporter gene activity within tumors and cytokine secretion into serum, respectively, demonstrating that SFV vectors infect woodchuck tumor cells. For evaluating antitumoral efficacy, woodchuck tumors were injected with increasing doses of SFV-enhIL-12, and tumor size was measured by ultrasonography following treatment. In five (83%) of six woodchucks, a dose-dependent, partial tumor remission was observed, with reductions in tumor volume of up to 80%, but tumor growth was restored thereafter. Intratumoral treatment further produced transient changes in WHV viremia and antigenemia, with ≥1.5-log10 reductions in serum WHV DNA in half of the woodchucks. Antitumoral and antiviral effects were associated with T-cell responses to tumor and WHV antigens and with expression of CD4 and CD8 markers, gamma interferon, and tumor necrosis factor alpha in peripheral blood mononuclear cells, suggesting that immune responses against WHV and HCC had been induced. These experimental observations suggest that intratumoral administration of SFV-enhIL-12 may represent a strategy for treatment of chronic HBV infection and associated HCC in humans but indicate that this approach could benefit from further improvements.Hepatocellular carcinoma (HCC) is a major public health problem worldwide, representing the fifth most common type of cancer. HCC is also the third leading cause of cancer-related death, mainly because only surgical and local ablative therapeutic options have shown efficacy in patients with this type of cancer (21). Approximately 80% of all HCC cases are attributed to chronic infection with hepatitis C virus and/or hepatitis B virus (HBV). Chronic carriers of HBV have a greater than 100-fold-increased relative risk of developing HCC compared to HBV-uninfected humans, with an annual incidence rate of 2 to 6% in cirrhotic patients. The high incidence of HCC, together with its poor prognosis and limited therapeutic options, warrants the development of new treatment strategies for this disease.There is increasing evidence that stimulation of the immune system for subsequent recognition and killing of tumor cells may be a valuable treatment option for liver cancer. In general, HCC appears to be an attractive target for immunotherapy because cases of spontaneous tumor regression have been reported, HCC is often infiltrated with lymphocytes, and HCC-associated proteins such as alpha-fetoprotein may be used as targets for immune-mediated killing of tumors (5, 49).A promising strategy to stimulate the deficient antitumoral immune response is based on the transfer and subsequent expression of immunostimulatory genes in tumor cells using viral or nonviral delivery vectors. One of the most effective immunostimulatory cytokines is interleukin-12 (IL-12), a protein usually expressed by macrophages and dendritic cells. IL-12 has been demonstrated to induce strong antitumoral effects that are mediated by the stimulation of T-helper cell type 1 (Th1) responses, including the activation of cytolytic T lymphocytes (CTL) and natural killer cells, and by the inhibition of angiognesis (48, 50). All of these effects are dependent on the production of gamma interferon (IFN-γ). Viral vectors that are based on adenovirus have been used to deliver IL-12 into several animal models with transplantable HCC, resulting in a localized expression of this cytokine and usually leading to antitumoral effects (3, 14, 37). However, and despite successful treatment of HCC in preclinical studies, a phase I clinical trial with a first-generation adenoviral vector for delivery and expression of IL-12 in patients with primary and metastatic liver cancer produced only a modest antitumoral effect (41). This poor response was probably due to the low and transient IL-12 expression in tumors. These results in humans indicated a need for vectors with higher potency and for preclinical testing in relevant models of HCC (i.e., large animals with spontaneous tumors).Vectors based on Semliki Forest virus (SFV), a member of the alphavirus group, are highly efficient in inducing antitumoral responses in a variety of animal models (2, 9, 10, 39, 44, 53). The SFV vector used in the present study is based on a viral RNA genome in which the region coding for the structural proteins has been replaced by a heterologous gene (24). Recombinant SFV RNA can be transcribed in vitro and transfected into cells, resulting in viral replication and subsequent production of a subgenomic RNA from which the heterologous protein is expressed at very high levels. Recombinant SFV RNA can be packaged into viral particles (vp) by cotransfecting it into cells together with two helper RNAs coding for the capsid and the envelope proteins (43). Compared to adenoviral vectors expressing IL-12, tumor treatment with SFV vectors expressing the same cytokine resulted in greater antitumoral effects in a murine colon adenocarcinoma model and also in a rat orthotopic HCC model (16, 39). The greater antitumoral effect mediated by SFV vectors has been attributed to the higher expression of IL-12 and to the induction of apoptosis caused by SFV replication within tumor cells. Apoptosis leads to the release of tumor antigens that can be taken up by antigen-presenting cells, thereby potentiating the antitumoral response induced by IL-12 (54). Furthermore, SFV vectors have low immunogenicity when delivered intratumorally, allowing repetitive administrations into the same tumor, which is not possible with adenoviral vectors (38).In the present study, the antitumoral efficacy of an SFV vector expressing IL-12 (SFV-enhIL-12) was investigated in woodchucks with HCC. The Eastern woodchuck (Marmota monax) is frequently infected with the woodchuck hepatitis virus (WHV), which is closely related to the human HBV in its structure, genomic organization, mechanism of replication, and course of infection (29). The woodchuck has been used as a mammalian model for research on HBV, including the pathogenesis of acute and chronic HBV infection, and for preclinical evaluation of the safety and efficacy of candidate antiviral drugs and therapeutic immunomodulators for the treatment of chronic HBV infection (29) and prevention of HCC (47).All woodchucks chronically infected with WHV as neonates develop HCC, and the median time for tumor appearance is 24 months of age (34, 47). After identification of HCC, the median survival time of woodchucks is 6 months, a situation similar to that for patients with HCC. In addition, WHV-induced hepatocarcinogenesis shows strong similarity to HBV-induced carcinogenesis in humans (34, 47). These features of HCC that are associated with persistent hepatitis virus infection make the woodchuck model unique compared to other animal models, in which HCC is induced by a chemical carcinogen or by transplantation of established tumor cell lines into immune-deficient or immune-compatible hosts. Woodchucks with large liver tumors that acquire malignant characteristics in a stepwise process similar to HCC in humans are an attractive and suitable model for the preclinical evaluation of new treatment strategies for HBV-induced HCC in humans (47).The antitumoral efficacy of a SFV vector expressing high levels of IL-12 (SFV-enhIL-12) was investigated in six woodchucks with established chronic WHV infection and primary HCC. The results demonstrate that SFV-delivered IL-12 expression produced a dose-dependent, partial tumor remission that was associated with a general activation of cellular immune responses against HCC. The antitumoral activity, in addition to an antiviral activity against WHV, and the favorable safety profile in woodchucks suggest that a therapeutic approach based on SFV-enhIL-12 may represent a treatment strategy for HCC in patients with chronic HBV infection, but the overall results also indicate that this approach needs further improvement for inducing a complete tumor remission.  相似文献   
54.
Fas and Fas ligand (FasL) are the main genes that control cell death in the immune system. Indeed, they are crucial for the regulation of T lymphocyte homeostasis because they can influence cell proliferation. A strong debate exists on the importance of Fas/FasL system during HIV infection, which is characterized by the loss of CD4+ T cells directly, or indirectly, caused by the virus. To investigate whether the genetic background of the host plays a role in the immunoreconstitution, we studied the influence of different Fas and FasL polymorphisms on CD4+ T lymphocyte count and plasma viral load following initiation of highly active antiretroviral therapy (HAART) in drug-naïve HIV+ patients. We studied 131 individuals, who were compared to 136 healthy donors. Statistical analysis was performed by using X 2 test, Fischer's Exact Test, and analysis for repeated measurements. The group of HIV+ patients had an unexpected lower frequency of FasLnt169 polymorphism (delT allele) than healthy controls (p=0.039). We then observed no significant differences in the immune reconstitution, in terms of CD4+ T cell increase, when the influence of single alleles of the gene Fas or FasL was considered. However, the combination of some polymorphisms of Fas or FasL significantly influenced CD4+ T cell production and viral load decrease, showing that these genes can play a role in the immunoreconstitution triggered by antiretroviral therapy.  相似文献   
55.
The role of Anti-Müllerian hormone (Amh) during gonad development has been studied extensively in mammals, but is less well understood in other vertebrates. In male mammalian embryos, Sox9 activates expression of Amh, which initiates the regression of the Mullerian ducts and inhibits the expression of aromatase (Cyp19a1), the enzyme that converts androgens to estrogens. To better understand shared features of vertebrate gonadogenesis, we cloned amh cDNA from zebrafish, characterized its genomic structure, mapped it, analyzed conserved syntenies, studied its expression pattern in embryos, larvae, juveniles, and adults, and compared it to the expression patterns of sox9a, sox9b and cyp19a1a. We found that the onset of amh expression occurred while gonads were still undifferentiated and sox9a and cyp19a1a were already expressed. In differentiated gonads of juveniles, amh showed a sexually dimorphic expression pattern. In 31 days post-fertilization juveniles, testes expressed amh and sox9a, but not cyp19a1a, while ovaries expressed cyp19a1a and sox9b, but not amh. In adult testes, amh and sox9a were expressed in presumptive Sertoli cells. In adult ovaries, amh and cyp19a1a were expressed in granulosa cells surrounding the oocytes, and sox9b was expressed in a complementary fashion in the ooplasm of oocytes. The observed expression patterns of amh, sox9a, sox9b, and cyp19a1a in zebrafish correspond to the patterns expected if their regulatory interactions have been conserved with mammals. The finding that zebrafish sox9b and sox8 were not co-expressed with amh in oocytes excludes the possibility that amh expression in zebrafish granulosa cells is directly regulated by either of these two genes.  相似文献   
56.
Anaerobic ammonium oxidation is a recent addition to the microbial nitrogen cycle, and its metabolic pathway, including the production and conversion of its intermediate hydrazine, is not well understood. Therefore, the effect of hydroxylamine addition on the hydrazine metabolism of anaerobic ammonium-oxidizing (anammox) bacteria was studied both experimentally and by mathematical modeling. It was observed that hydroxylamine was disproportionated biologically in the absence of nitrite into dinitrogen gas and ammonium. Little hydrazine accumulated during this process; however, rapid hydrazine production was observed when nearly all hydroxylamine was consumed. A mechanistic model is proposed in which hydrazine is suggested to be continuously produced from ammonium and hydroxylamine (possibly via nitric oxide) and subsequently oxidized to N(2). The electron acceptor for hydrazine oxidation is hydroxylamine, which is reduced to ammonium. A decrease in the hydroxylamine reduction rate, therefore, leads to a decrease in the hydrazine oxidation rate, resulting in the observed hydrazine accumulation. The proposed mechanism was verified by a mathematical model which could explain and predict most of the experimental data.  相似文献   
57.
The use of animal models has facilitated numerous scientific developments, especially when employing “omics” technologies to study the effects of various environmental factors on humans. Our study presents a new bioinformatics pipeline suitable when the generated microarray data from animal models does not contain the necessary human gene name annotation. We conducted single color gene expression microarray on duodenum and spleen tissue obtained from pigs which have been exposed to zearalenone and Escherichia coli contamination, either alone or combined. By performing a combination of file format modifications and data alignments using various online tools as well as a command line environment, we performed the pig to human gene name extrapolation with an average yield of 58.34%, compared to 3.64% when applying more simple methods. In conclusion, while online data analysis portals on their own are of great importance in data management and assessment, our new pipeline provided a more effective approach for a situation which can be frequently encountered by researchers in the “omics” era.  相似文献   
58.
Plasma concentrations of progesterone (P4), estradiol-17β (E2), estrone (E1) and estrone sulfate (E1S) were measured during gestation in eight guanacos kept in captivity. Gestational length was 346.1 ± 9.8 days. P4 plasma concentrations increased after ovulation and remained elevated until parturition. However, during the last 4 weeks of gestation, a gradual decrease from 4.17 × 1.17±1 nmol/L to 2.02 × 1.95±1 nmol/L on day 5 before parturition was observed, followed by a more abrupt final decline to baseline concentrations which were reached on the day after parturition. Mean E2 plasma concentrations started to increase during the eighth month of gestation, and were significantly elevated up to maximum concentrations of 484.7 × 1.21±1 pmol/L during the last 2 months of pregnancy. Concentrations returned to baseline during the last 2 days of gestation. An increase of E1S concentrations (p < 0.01) was observed in the eleventh month of gestation. Mean E1S concentrations remained rather constant during the last 3 weeks of gestation between 4 to 8 nmol/L until parturition, when a steep precipitous decline was observed. E1 concentrations were slightly elevated during the last 4 weeks of gestation, however, maximum concentrations did not exceed 1.5 nmol/L. The results show distinct species specific features of gestational steroid hormone profiles in the guanaco in comparison to domestic South American camelids, such as a more pronounced gradual prepartal decrease of P4 concentrations prior to the final decline to baseline, and clearly lesser E1S concentrations during the last 4 weeks of gestation, which lack a continuous prepartal increase.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号