首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1066篇
  免费   98篇
  1164篇
  2024年   3篇
  2023年   8篇
  2022年   22篇
  2021年   42篇
  2020年   29篇
  2019年   31篇
  2018年   45篇
  2017年   43篇
  2016年   51篇
  2015年   82篇
  2014年   78篇
  2013年   89篇
  2012年   107篇
  2011年   106篇
  2010年   73篇
  2009年   42篇
  2008年   64篇
  2007年   50篇
  2006年   42篇
  2005年   39篇
  2004年   42篇
  2003年   31篇
  2002年   27篇
  2001年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1968年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
101.
102.

Purpose

To investigate the utility of a liposomal-iodinated nanoparticle contrast agent and computed tomography (CT) imaging for characterization of primary nodules in genetically engineered mouse models of non-small cell lung cancer.

Methods

Primary lung cancers with mutations in K-ras alone (KrasLA1) or in combination with p53 (LSL-KrasG12D;p53FL/FL) were generated. A liposomal-iodine contrast agent containing 120 mg Iodine/mL was administered systemically at a dose of 16 µl/gm body weight. Longitudinal micro-CT imaging with cardio-respiratory gating was performed pre-contrast and at 0 hr, day 3, and day 7 post-contrast administration. CT-derived nodule sizes were used to assess tumor growth. Signal attenuation was measured in individual nodules to study dynamic enhancement of lung nodules.

Results

A good correlation was seen between volume and diameter-based assessment of nodules (R2>0.8) for both lung cancer models. The LSL-KrasG12D;p53FL/FL model showed rapid growth as demonstrated by systemically higher volume changes compared to the lung nodules in KrasLA1 mice (p<0.05). Early phase imaging using the nanoparticle contrast agent enabled visualization of nodule blood supply. Delayed-phase imaging demonstrated significant differential signal enhancement in the lung nodules of LSL-KrasG12D;p53FL/FL mice compared to nodules in KrasLA1 mice (p<0.05) indicating higher uptake and accumulation of the nanoparticle contrast agent in rapidly growing nodules.

Conclusions

The nanoparticle iodinated contrast agent enabled visualization of blood supply to the nodules during the early-phase imaging. Delayed-phase imaging enabled characterization of slow growing and rapidly growing nodules based on signal enhancement. The use of this agent could facilitate early detection and diagnosis of pulmonary lesions as well as have implications on treatment response and monitoring.  相似文献   
103.

Background

Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states.

Methodology/Principal Findings

The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability.

Conclusions/Significance

For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.  相似文献   
104.

Background

Increased rates for failure in leishmaniasis antimony treatment have been recently recognized worldwide. Although several risk factors have been identified there is no clinical score to predict antimony therapy failure of cutaneous leishmaniasis.

Methods

A case control study was conducted in Peru from 2001 to 2004. 171 patients were treated with pentavalent antimony and followed up to at least 6 months to determine cure or failure. Only patients with ulcerative cutaneous leishmaniasis (N = 87) were considered for data analysis. Epidemiological, demographical, clinical and laboratory data were analyzed to identify risk factors for treatment failure. Two prognostic scores for antimonial treatment failure were tested for sensitivity and specificity to predict antimony therapy failure by comparison with treatment outcome.

Results

Among 87 antimony-treated patients, 18 (21%) failed the treatment and 69 (79%) were cured. A novel risk factor for treatment failure was identified: presence of concomitant distant lesions. Patients presenting concomitant-distant lesions showed a 30.5-fold increase in the risk of treatment failure compared to other patients. The best prognostic score for antimonial treatment failure showed a sensitivity of 77.78% and specificity of 95.52% to predict antimony therapy failure.

Conclusions

A prognostic score including a novel risk factor was able to predict antimonial treatment failure in cutaneous leishmaniasis with high specificity and sensitivity. This prognostic score presents practical advantages as it relies on clinical and epidemiological characteristics, easily obtained by physicians or health workers, and makes it a promising clinical tool that needs to be validated before their use for developing countries.  相似文献   
105.
106.
The upper and poleward limit of tree distribution are usually determined by abiotic factors such as low temperature and strong winds. Thus, cold resistance is a key element for survival in high altitudes and latitudes where conditions can reduce plant growth. A trade-off between resource allocation to cold resistance and growth could emerge in populations frequently exposed to low temperatures like those in the treeline zone. We studied annual height growth and ice nucleation temperature in Nothofagus pumilio (Nothofagaceae) populations growing in its extremes of altitudinal distribution and in 3 sites situated on a latitudinal gradient in the Chilean Andes. Additionally, gas exchange, water and nitrogen use efficiency and total soluble sugar (TSS) were also measured as possible mechanisms for survival in high altitudes. Individuals from the treeline populations showed lower annual height growth and lower ice nucleation temperatures compared with those from lower populations. In the same way, individuals from more poleward populations showed lower annual height growth and lower ice nucleation temperatures. Gas exchange, water and nitrogen use efficiency and TSS were also higher in the high altitude populations. The results obtained support the hypothesis of trade-off, because the upper and poleward populations showed more cold resistance but a lower height growth. Additionally, we show that cold resistance mechanisms do not impact the physiological performance, suggesting possible adaptation of the high altitude populations. Low temperatures may be affecting cellular growth instead of photosynthesis, creating a pool of carbohydrates that could participate in cold tolerance. Other abiotic and biotic factors should be also assessed to fully understand the distributional range of Nothofagus species.  相似文献   
107.
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.  相似文献   
108.
Anaerobic ammonium oxidation is a recent addition to the microbial nitrogen cycle, and its metabolic pathway, including the production and conversion of its intermediate hydrazine, is not well understood. Therefore, the effect of hydroxylamine addition on the hydrazine metabolism of anaerobic ammonium-oxidizing (anammox) bacteria was studied both experimentally and by mathematical modeling. It was observed that hydroxylamine was disproportionated biologically in the absence of nitrite into dinitrogen gas and ammonium. Little hydrazine accumulated during this process; however, rapid hydrazine production was observed when nearly all hydroxylamine was consumed. A mechanistic model is proposed in which hydrazine is suggested to be continuously produced from ammonium and hydroxylamine (possibly via nitric oxide) and subsequently oxidized to N(2). The electron acceptor for hydrazine oxidation is hydroxylamine, which is reduced to ammonium. A decrease in the hydroxylamine reduction rate, therefore, leads to a decrease in the hydrazine oxidation rate, resulting in the observed hydrazine accumulation. The proposed mechanism was verified by a mathematical model which could explain and predict most of the experimental data.  相似文献   
109.
Advanced glycation end products (AGEs) are involved in the occurrence of vascular complications in diabetes. The present study was undertaken to investigate the level of low-molecular weight products of AGEs (LMW-AGEs) in relation to microvascular complications in type 1 diabetes, and the possible relationship with nitric oxide (NO) as a marker of endothelial function. Patients with normal renal function (NRF) were classified into two groups: (1) without, and (2) with diabetic neuropathy; and patients with renal impairment also into two groups: (3) diabetic renal disease, and (4) end-stage renal disease. The fluorescence of LMW-AGEs and measurement of NO metabolites was assessed in 277 serum samples. In addition, multiple regression analysis was performed. In group 1, LMW-AGEs level (9.3±1.1 AF%) was higher than in the control group (2.4±0.3 AF%). A trend in the increase of LMW-AGEs with neuropathy (29.7±5.5 AF%, group 2), and further with renal impairment (47.0±8.0, group 3 and 137.8±25.5 AF%, group 4), was observed. In multivariate regression analysis LMW-AGEs were associated with NO metabolites in group 2. In NRF patients, diabetic neuropathy was significantly correlated with LMW-AGEs and NO metabolites, independently of serum creatinine and duration of diabetes. This relationship suggests that the NO and LMW-AGEs’ actions (possibly synergistic) in endothelial activation possess a role in the initiation and development of diabetic microvascular complications.  相似文献   
110.
We previously reported that exposure to extremely low-frequency electromagnetic fields (ELFEFs) increases the expression and function of voltage-gated Ca2+)channels and that Ca2+ influx through Ca(v)1 channels plays a key role in promoting the neuronal differentiation of neural stem/progenitor cells (NSCs). The present study was conducted to determine whether ELFEFs influence the neuronal differentiation of NSCs isolated from the brain cortices of newborn mice by modulating Ca(v)1-channel function. In cultures of differentiating NSCs exposed to ELFEFs (1 mT, 50 Hz), the percentage of cells displaying immunoreactivity for neuronal markers (beta-III-tubulin, MAP2) and for Ca(v)1.2 and Ca(v)1.3 channels was markedly increased. NSC-differentiated neurons in ELFEF-exposed cultures also exhibited significant increases in spontaneous firing, in the percentage of cells exhibiting Ca2+ transients in response to KCl stimulation, in the amplitude of these transients and of Ca2+ currents generated by the activation of Ca(v)1 channels. When the Ca(v)1-channel blocker nifedipine (5 microM) was added to the culture medium, the neuronal yield of NSC differentiation dropped significantly, and ELFEF exposure no longer produced significant increases in beta-III-tubulin- and MAP2-immunoreactivity rates. In contrast, the effects of ELFEFs were preserved when NSCs were cultured in the presence of either glutamate receptor antagonists or Ca(v)2.1- and Ca(v)2.2-channel blockers. ELFEF stimulation during the first 24 h of differentiation caused Ca(v)1-dependent increases in the number of cells displaying CREB phosphorylation. Our data suggest that ELFEF exposure promotes neuronal differentiation of NSCs by upregulating Ca(v)1-channel expression and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号