首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   5篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   8篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   13篇
  2010年   10篇
  2009年   2篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
  1981年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
71.
72.
BackgroundThere are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication.Conclusions/SignificanceThe method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.  相似文献   
73.
Detecting pathogenic DNA by intracellular receptors termed “sensors” is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion. Here, we review the newly characterized nucleus-originating immune signaling pathways, their links to other crucial host defenses, and unique mechanisms by which viruses suppress their functions. We frame these findings in the context of human pathologies associated with nuclear replicating DNA viruses.  相似文献   
74.
The lipoprotein Lpp is the most numerically abundant protein in Escherichia coli, has been investigated for over 40 years, and has served as the paradigmatic bacterial lipoprotein since its initial discovery. It exists in two distinct forms: a 'bound-form', which is covalently bound to the cell's peptidoglycan layer, and a 'free-form', which is not. Although it is known that the carboxyl-terminus of bound-form Lpp is located in the periplasm, the precise location of free-form Lpp has never been determined. For decades, it has been widely assumed that free-form Lpp is associated with bound-form. In this work, we show that the free and bound forms of Lpp are not largely associated with each other, but are found in distinct subcellular locations. Our results indicate that free-form Lpp spans the outer membrane and is surface-exposed, whereas bound-form Lpp resides in the periplasm. Thus, Lpp represents a novel example of a single lipoprotein that is able to occupy distinct subcellular locations, and challenges models in which the free and bound forms of Lpp are assumed to be associated with each other.  相似文献   
75.
Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context.  相似文献   
76.
Metastasis is the deadliest and most poorly understood feature of malignant diseases. Recent work has shown that Metadherin (MTDH) is overexpressed in over 40% of breast cancer patients and promotes metastasis and chemoresistance in experimental models of breast cancer progression. Here we applied mass spectrometry-based screen to identify staphylococcal nuclease domain-containing 1 (SND1) as a candidate MTDH-interacting protein. After confirming the interaction between SND1 and MTDH, we tested the role of SND1 in breast cancer and found that it strongly promotes lung metastasis. SND1 was further shown to promote resistance to apoptosis and to regulate the expression of genes associated with metastasis and chemoresistance. Analyses of breast cancer clinical microarray data indicated that high expression of SND1 in primary tumors is strongly associated with reduced metastasis-free survival in multiple large scale data sets. Thus, we have uncovered SND1 as a novel MTDH-interacting protein and shown that it is a functionally and clinically significant mediator of metastasis.  相似文献   
77.
Flavivirus NS1 is a nonstructural glycoprotein that is expressed on the cell surface and secreted into the extracellular space. Despite its transit through the secretory pathway, NS1 is an essential gene linked to early viral RNA replication. How this occurs has remained a mystery given the disparate localization of NS1 and the viral RNA replication complex, as the latter is present on the cytosolic face of the endoplasmic reticulum (ER). We recently identified an N-terminal di-amino acid motif in NS1 that modulates protein targeting and affected viral replication. Exchange of two amino acids at positions 10 and 11 from dengue virus (DENV) into West Nile virus (WNV) NS1 (RQ10NK) changed its relative surface expression and secretion and attenuated infectivity. However, the phenotype of WNV containing NS1 RQ10NK was unstable, as within two passages heterogeneous plaque variants were observed. Here, using a mutant WNV encoding the NS1 RQ10NK mutation, we identified a suppressor mutation (F86C) in NS4B, a virally encoded transmembrane protein with loops on both the luminal and cytoplasmic sides of the ER membrane. Introduction of NS4B F86C specifically rescued RNA replication of mutant WNV but did not affect the wild-type virus. Mass spectrometry and coimmunoprecipitation studies established a novel physical interaction between NS1 and NS4B, suggesting a mechanism for how luminal NS1 conveys signals to the cytoplasm to regulate RNA replication.  相似文献   
78.
79.
Cristea  V.  Dalla Vecchia  F.  La Rocca  N. 《Photosynthetica》1999,37(1):53-59
Chrysanthemum plantlets were cultivated in vitro on media with 2.0, 0.3, or 0 % sucrose, or photoautotrophically without an organic carbon source but with supplementation of the culture vessel atmosphere with 2 % CO2. The photoautotrophically cultivated plantlets showed a better growth and multiplication, higher contents of chlorophyll (Chl) and carotenoids, higher Chl a/b ratio, net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase activities than plantlets grown on the medium with sucrose. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
80.
Recent evidence indicates that the mitochondrial lipid cardiolipin may be instrumental in the proapoptotic action of Bcl-2 family proteins on mitochondrial membranes, leading to the release of apoptogenic factors. However, contrasting evidence indicates that progressive loss of cardiolipin occurs during apoptosis. Here we show that Bid, a crucial proapoptotic protein that integrates the action of other Bcl-2 family members, exhibits discrete specificity for metabolites of cardiolipin, especially monolysocardiolipin (MCL). MCL, normally present in the remodelling of mitochondrial lipids, progressively increases in mitochondria during Fas-mediated apoptosis as a by-product of cardiolipin degradation, and also enhances Bid binding to membranes. MCL may thus play a crucial role in connecting lipid metabolism, relocation of Bid to mitochondria and integrated action of Bcl-2 proteins on mitochondrial membranes. We propose that Bid interaction with MCL 'primes' the mitochondrial outer membrane via segregation of lipid domains, facilitating membrane discontinuity and leakage of apoptogenic factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号