首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   21篇
  2021年   4篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   16篇
  2013年   18篇
  2012年   18篇
  2011年   25篇
  2010年   19篇
  2009年   23篇
  2008年   17篇
  2007年   17篇
  2006年   15篇
  2005年   11篇
  2004年   11篇
  2003年   12篇
  2002年   11篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1989年   1篇
  1988年   6篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
  1929年   1篇
排序方式: 共有310条查询结果,搜索用时 31 毫秒
81.
82.
83.
M-DNA is a complex between the divalent metal ions Zn2+, Ni2+ and Co2+ and duplex DNA which forms at a pH of ~8.5. The stability and formation of M-DNA was monitored with an ethidium fluorescence assay in order to assess the relationship between pH, metal ion concentration, DNA concentration and the base composition. The dismutation of calf thymus DNA exhibits hysteresis with the formation of M-DNA occurring at a higher pH than the reconversion of M-DNA back to B-DNA. Hysteresis is most prominent with the Ni form of M-DNA where complete reconversion to B-DNA takes several hours even in the presence of EDTA. Increasing the DNA concentration leads to an increase in the metal ion concentration required for M-DNA formation. Both poly(dG)•poly(dC) and poly(dA)•poly(dT) formed M-DNA more readily than the corresponding mixed sequence DNAs. For poly(dG)•(poly(dC) M-DNA formation was observed at pH 7.4 with 0.5 mM ZnCl2. Modified bases were incorporated into a 500 bp fragment of phage λ DNA by polymerase chain reaction. DNAs in which guanine was replaced with hypoxanthine or thymine with 5-fluorouracil formed M-DNA at pHs below 8 whereas substitutions such as 2-aminoadenine and 5-methylcytosine had little effect. Poly[d(A5FU)] also formed a very stable M-DNA duplex as judged from Tm measurements. It is evident that the lower the pKa of the imino proton of the base, the lower the pH at which M-DNA will form; a finding that is consistent with the replacement of the imino proton with the metal ion.  相似文献   
84.
The auxin influx carrier is essential for correct leaf positioning   总被引:8,自引:0,他引:8  
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.  相似文献   
85.
Plant architecture   总被引:5,自引:0,他引:5       下载免费PDF全文
Plant architecture is species specific, indicating that it is under strict genetic control. Although it is also influenced by environmental conditions such as light, temperature, humidity and nutrient status, here we wish to focus only on the endogenous regulatory principles that control plant architecture. We summarise recent progress in the understanding of the basic patterning mechanisms involved in the regulation of leaf arrangement, the genetic regulation of meristem determinacy, i.e. the decision to stop or continue growth, and the control of branching during vegetative and generative development.  Finally, we discuss the basis of leaf architecture and the role of cell division and cell growth in morphogenesis.  相似文献   
86.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   
87.
88.
89.
90.
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号