首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   841篇
  免费   110篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   16篇
  2016年   9篇
  2015年   25篇
  2014年   21篇
  2013年   25篇
  2012年   22篇
  2011年   24篇
  2010年   23篇
  2009年   18篇
  2008年   25篇
  2007年   31篇
  2006年   26篇
  2005年   31篇
  2004年   23篇
  2003年   19篇
  2002年   19篇
  2001年   20篇
  2000年   18篇
  1999年   23篇
  1998年   10篇
  1996年   10篇
  1995年   10篇
  1992年   12篇
  1991年   23篇
  1990年   10篇
  1988年   14篇
  1987年   12篇
  1986年   16篇
  1985年   11篇
  1984年   23篇
  1983年   12篇
  1982年   15篇
  1980年   9篇
  1979年   21篇
  1977年   9篇
  1976年   17篇
  1975年   16篇
  1974年   17篇
  1973年   15篇
  1972年   14篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1968年   14篇
  1967年   12篇
  1966年   12篇
  1965年   9篇
排序方式: 共有951条查询结果,搜索用时 15 毫秒
851.
852.
The unique biophysical properties of tryptophan residues have been exploited for decades to monitor protein structure and dynamics using a variety of spectroscopic techniques, such as fluorescence and nuclear magnetic resonance (NMR). We recently designed a tryptophan mutant in the regulatory N‐domain of cardiac troponin C (F77W‐cNTnC) to study the domain orientation of troponin C in muscle fibers using solid‐state NMR. In our previous study, we determined the NMR structure of calcium‐saturated mutant F77W‐V82A‐cNTnC in the presence of 19% 2,2,2‐trifluoroethanol (TFE). TFE is a widely used cosolvent in the biophysical characterization of the solution structures of peptides and proteins. It is generally assumed that the structures are unchanged in the presence of cosolvents at relatively low concentrations, and this has been verified for TFE at the level of the overall secondary and tertiary structure for several calcium regulatory proteins. Here, we present the NMR solution structure of the calcium saturated F77W‐cNTnC in presence of its biological binding partner troponin I peptide (cTnI144–163) and in the absence of TFE. We have also characterized a panel of six F77W‐cNTnC structures in the presence and absence TFE, cTnI144–163, and the extra mutation V82A, and used 19F NMR to characterize the effect of TFE on the F77(5fW) analog. Our results show that although TFE did not perturb the overall protein structure, TFE did induce a change in the orientation of the indole ring of the buried tryptophan side chain from the anticipated position based upon homology with other proteins, highlighting the potential dangers of the use of cosolvents.  相似文献   
853.
An aquatic birnavirus, first isolated in Australia from farmed Atlantic salmon in Tasmania in 1998, has continued to be re-isolated on an infrequent but regular basis. Due to its low pathogenicity, there has been little urgency to undertake a comprehensive characterisation of this aquatic birnavirus. However, faced with possible incursions of any new aquatic birnaviruses, specific identification and differentiation of this virus from other, pathogenic, aquatic birnaviruses such as infectious pancreatic necrosis virus (IPNV) are becoming increasingly important. The present study determined the nucleic acid sequence of the aquatic birnavirus originally isolated in 1998, as well as a subsequent isolate from 2002. The sequences of the VP2 and VP5 genes were compared to that of other aquatic birnaviruses, including non-pathogenic aquatic birnavirus isolates from New Zealand and pathogenic infectious pancreatic necrosis virus isolates from North America and Europe. The deduced amino acid (aa) sequences indicate that the Australian and New Zealand isolates fall within Genogroup 5 together with IPNV strains Sp, DPL, Fr10 and N1. Thus, Genogroup 5 appears to contain aquatic birnavirus isolates from quite diverse host and geographical ranges. Using the sequence information derived from this study, a simple diagnostic test has been developed that differentiates the current Australian isolates from all other aquatic birnaviruses, including the closely related isolates from New Zealand.  相似文献   
854.
Middle Jurassic fossil plants from the Grisethorpe Bed at Cayton Bay and Grisethorpe Bay, Yorkshire, UK, are preserved in a soft claystone, and plant mesofossils recovered by sieving reveal excellent details of external structure. Studies of these mesofossils complement previous work on macrofossils from the Grisethorpe Bed and allow the plant fossils in this classic flora to be studied in a similar way to those preserved in Cretaceous mesofloras. Bennettitales, a key group in discussions of how angiosperms may be related to other seed plants, are especially well represented among mesofossils from the Grisethorpe Bed. Abundant bennettitalean leaves, scale leaves, and fragments of pollen and ovulate organs provide new information on these extinct plants. In particular, a specimen of Williamsoniella coronata (presumed aborted) shows only weak differentiation between interseminal scales and ovules and provides further evidence of homology between these structures.  相似文献   
855.
856.
857.
Both respiratory-competent and respiratory-deficient yeast cells reduce external ferricyanide. The reduction is stimulated by ethanol and inhibited by the alcohol dehydrogenase inhibitor, pyrazole. The reduction of ferricyanide is not inhibited by inhibitors of mitochondrial or microsomal ferricyanide reduction. Cells in exponential-phase growth show a much higher rate of ferricyanide reduction. The reduction of ferricyanide is accompanied by increased release of protons by the yeast cells. We propose that the ferricyanide reduction is carried out by a transmembrane NADH dehydrogenase.  相似文献   
858.
859.
The role of catalase in lipid metabolism has been studied by means of a comparison of the turnover characteristics of the major lipid classes in the normal mouse with those of animals in which the catalase activity had been inhibited and blocked by aminotriazole and allylisopropylacetamide. Double isotope ratios were determined in the lipid fractions of several tissues following the injection of labeled glycerol, and a number of significant differences were identified between these treatments. Since catalase is recognized as an integral component of the peroxisomal pathway of fatty acid oxidation, these results may be taken as indicating that interruption of the process of peroxisomal beta-oxidation in this manner cause extensive perturbations of lipid metabolism in the living animal, and these perturbations extend well beyond those tissues where the predominant localization of these organelles occurs. The concept which derives from these data--that of a significant regulatory role of peroxisomes in relation to the overall balance of lipid metabolism in the animal body--is described and discussed.  相似文献   
860.
As one of the oldest known human diseases, leprosy or Hansen''s disease remains a public health concern around the world with over 200 000 new cases in 2018. Most human leprosy cases are caused by Mycobacterium leprae, but a small number of cases are now known to be caused by Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of genomic variation in M. leprae is not well defined. Particularly, in the Pacific Islands, the origins of leprosy are disputed. Historically, it has been argued that leprosy arrived on the islands during nineteenth century colonialism, but some oral traditions and palaeopathological evidence suggest an older introduction. To address this, as well as investigate patterns of pathogen exchange across the Pacific Islands, we extracted DNA from 39 formalin-fixed paraffin-embedded biopsy blocks dating to 1992–2016. Using whole-genome enrichment and next-generation sequencing, we produced nine M. leprae genomes dating to 1998–2015 and ranging from 4-63× depth of coverage. Phylogenetic analyses indicate that these strains belong to basal lineages within the M. leprae phylogeny, specifically falling in branches 0 and 5. The phylogeographical patterning and evolutionary dating analysis of these strains support a pre-modern introduction of M. leprae into the Pacific Islands.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号