首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   108篇
  958篇
  2020年   10篇
  2019年   12篇
  2017年   15篇
  2016年   10篇
  2015年   28篇
  2014年   20篇
  2013年   25篇
  2012年   23篇
  2011年   24篇
  2010年   23篇
  2009年   18篇
  2008年   24篇
  2007年   31篇
  2006年   27篇
  2005年   31篇
  2004年   23篇
  2003年   19篇
  2002年   19篇
  2001年   23篇
  2000年   19篇
  1999年   21篇
  1998年   10篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1992年   12篇
  1991年   23篇
  1990年   10篇
  1988年   14篇
  1987年   12篇
  1986年   17篇
  1985年   11篇
  1984年   23篇
  1983年   12篇
  1982年   15篇
  1980年   9篇
  1979年   21篇
  1977年   8篇
  1976年   17篇
  1975年   16篇
  1974年   17篇
  1973年   15篇
  1972年   14篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1968年   14篇
  1967年   12篇
  1966年   12篇
  1965年   9篇
排序方式: 共有958条查询结果,搜索用时 0 毫秒
51.
Developing chloroplasts were incubated under conditions previously shown to induce protochlorophyll and chlorophyll biosynthesis, as well as chloroplast maintenance and partial differentiation in vitro. In the presence of air, δ-aminolevulinic acid, coenzyme A, glutathione, potassium phosphate, methyl alcohol, magnesium, nicotinamide adenine dinucleotide, and adenosine triphosphate, microgram quantities of chlorophyll accumulated after 1 hour of incubation. Part of the chlorophyll was not extractable in organic solvents; it is referred to as bound chlorophyll. The amount of bound chlorophyll depended on the degree of cotyledon greening at the time of plastid isolation. Etioplasts with or without a lag phase of chlorophyll biosynthesis synthesized nonphototransformable protochlorophyll and smaller amounts of extractable chlorophyll. As the greening of excised cotyledons progressed, more of the chlorophyll became bound before and after in vitro incubation. It is suggested that this increase in the fraction of bound chlorophyll reflects the biosynthesis of membrane-bound chlorophyll receptor sites. In the absence of cofactors, chlorophyll biosynthesis was blocked and porphyrins accumulated, indicating damage of the chlorophyll biosynthetic chain. It is concluded that chlorophyll accumulation constitutes a potentially convenient tool for the study of thylakoid membrane biogenesis in vitro.  相似文献   
52.
Selective inhibition of ferricyanide reduction in photosystem II by lipophilic thiols indicates a unique pathway of electron transport, which is not involved in reduction of class III acceptors or transfer of electrons to photosystem I. Both aromatic and aliphatic thiols induce the inhibition, but thiol binding reagents such as p-hydroxymercuribenzoate or N-ethylmaleimide do not inhibit. The inhibition can be observed using either dibromothymoquinone or bathophenanthroline to direct electrons away from photosystem I. No pretreatment of chloroplasts with thiols in the light was necessary to inhibit ferricyanide reduction by photosystem II or the O2 evolution associated with ferricyanide reduction.  相似文献   
53.
The reduction of ionic mercury to elemental mercury by the mercuric reductase (MerA) enzyme plays an important role in the biogeochemical cycling of mercury in contaminated environments by partitioning mercury to the atmosphere. This activity, common in aerobic environments, has rarely been examined in anoxic sediments where production of highly toxic methylmercury occurs. Novel degenerate PCR primers were developed which span the known diversity of merA genes in Gram-negative bacteria and amplify a 285 bp fragment at the 3' end of merA. These primers were used to create a clone library and to analyse merA diversity in an anaerobic sediment enrichment collected from a mercury-contaminated site in the Meadowlands, New Jersey. A total of 174 sequences were analysed, representing 71 merA phylotypes and four novel MerA clades. This first examination of merA diversity in anoxic environments suggests an untapped resource for novel merA sequences.  相似文献   
54.
In beta cells from the pancreas, ATP-sensitive potassium channels, or KATP channels, are composed of two subunits, SUR1 and KIR6.2, assembled in a (SUR1/KIR6.2)4 stoichiometry. The correct stoichiometry of channels at the cell surface is tightly regulated by the presence of novel endoplasmic reticulum (ER) retention signals in SUR1 and KIR6.2; incompletely assembled KATP channels fail to exit the ER/cis-Golgi compartments. In addition to these retrograde signals, we show that the C terminus of SUR1 has an anterograde signal, composed in part of a dileucine motif and downstream phenylalanine, which is required for KATP channels to exit the ER/cis-Golgi compartments and transit to the cell surface. Deletion of as few as seven amino acids, including the phenylalanine, from SUR1 markedly reduces surface expression of KATP channels. Mutations leading to truncation of the C terminus of SUR1 are one cause of a severe, recessive form of persistent hyperinsulinemic hypoglycemia of infancy. We propose that the complete loss of beta cell KATP channel activity seen in this form of hyperinsulinism is a failure of KATP channels to traffic to the plasma membrane.  相似文献   
55.
Many of the latest trends in vaccine development are dependent on immunological adjuvants that mediate and promote a wide variety of immune responses. One promising adjuvant candidate, monophosphoryl lipid A (MPL) immunostimulant, is being investigated with many of these new vaccine approaches in either preclinical or clinical trials. This is possible because different vehicle formulations can significantly influence the type of immunological response MPL promotes. Procedures are provided for formulating MPL in an aqueous vehicle or an oil-in-water emulsion. These two MPL formulations can be beneficial for most vaccine approaches being investigated today.  相似文献   
56.
Park SY  Quezada CM  Bilwes AM  Crane BR 《Biochemistry》2004,43(8):2228-2240
Dimerization of the chemotaxis histidine kinase CheA is required for intersubunit autophosphorylation [Swanson, R. V., Bourret, R. B., and Simon, M. I. (1993) Mol. Microbiol. 8, 435-441]. Here we show that CheA dimers exchange subunits by the rate-limiting dissociation of a central four-helix bundle association domain (P3), despite the high stability of P3 versus unfolding. P3 alone determines the stability and exchange properties of the CheA dimer. For CheA proteins from the mesophile Escherichia coli and the thermophile Thermotoga maritima, subunit dissociation activates at temperatures where the respective organisms live (37 and 80 degrees C). Under destabilizing conditions, P3 dimer dissociation is cooperative with unfolding. Chemical denaturation is reversible for both EP3 and TP3. Aggregation accompanies thermal unfolding for both proteins under most conditions, but thermal unfolding is reversible and two-state for EP3 at low protein concentrations. Residue differences within interhelical loops may account for the contrasted thermodynamic properties of structurally similar EP3 and TP3 (41% sequence identity). Under stabilizing conditions, greater correlation between activation energy for dimer dissociation and P3 stability suggests more unfolding in the dissociation of EP3 than TP3. Furthermore, destabilization of extended conformations by glycerol slows relative dissociation rates more for EP3 than for TP3. Nevertheless, at physiological temperatures, neither protein likely unfolds completely during subunit exchange. EP3 and TP3 will not exchange subunits with each other. The receptor coupling protein CheW reduces the subunit dissociation rate of the T. maritima CheA dimer by interacting with the regulatory domain P5.  相似文献   
57.
Protein oligomerisation is a prerequisite for the toxicity of a number of bacterial toxins. Examples include the pore-forming cytotoxin streptolysin O, which oligomerises to form large pores in the membrane and the protective antigen of anthrax toxin, where a heptameric complex is essential for the delivery of lethal factor and edema factor to the cell cytosol. Binding of the clostridial neurotoxins to receptors on neuronal cells is well characterised, but little is known regarding the quaternary structure of these toxins and the role of oligomerisation in the intoxication process. We have investigated the oligomerisation of the receptor binding domain (H(C)) of tetanus toxin, which retains the binding and trafficking properties of the full-length toxin. Electrophoresis, size exclusion chromatography and mass spectrometry were used to demonstrate that H(C) undergoes concentration-dependent oligomerisation in solution. Reducing agents were found to affect H(C) oligomerisation and, using mutagenesis, Cys869 was shown to be essential for this process. Furthermore, the oligomeric state and quaternary structure of H(C) in solution was assessed using synchrotron small-angle X-ray scattering. Ab initio shape analysis and rigid body modelling coupled with mutagenesis data allowed the construction of an unequivocal model of dimeric H(C) in solution. We propose a possible mechanism for H(C) oligomerisation and discuss how this may relate to toxicity.  相似文献   
58.
Summary An improved basal medium is presented that requires only minimal supplementation with dialyzed fetal bovine serum or bovine serum albumin and fetuin to be comparable to Ham's F-10, which requires 15% horse serum (HS) and 2.5% fetal bovine serum (FBS) for the growth and function of Y-1, mouse adrenal cortex tumor, cells. Cell monolayers maintained for up to 2 weeks without any protein supplementation have retained their steroid response to ACTH. The medium differs from Ham's F-10 in its buffer composition and higher calcium-ion concentration. This medium should be a useful adjunct to studies pertaining to steroid and lipid intermediary metabolism, the retention of a specialized physiological function in a chemically defined medium, and the mechanism of hormonal response. Supported by the Medical Research Service of the Veterans Administration.  相似文献   
59.
Using particle bombardment-mediated transformation, a codon-optimized synthetic gene for human lysozyme was introduced into the calli of rice (Oryza sativa) cultivar Taipei 309. The expression levels of recombinant human lysozyme in the transformed rice suspension cell culture approached approximately 4% of total soluble protein. Recombinant human lysozyme was purified to greater than 95% homogeneity using a two-step chromatography process. Amino acid sequencing verified that the N-terminus of the mature recombinant human lysozyme was identical to native human lysozyme. This indicates that the rice RAmy3D signal peptide was correctly cleaved off from the human lysozyme preprotein by endogenous rice signal peptidase. Recombinant human lysozyme was found to have the same molecular mass, isoelectric point and specific activity as native human lysozyme. The bactericidal activity of recombinant human lysozyme was determined by turbidimetric assay using Micrococcus lysodeikticus in 96-well microtiter plates. The bactericidal activity of lysozyme on Gram-negative bacteria was examined by adding purified lysozyme to mid-log phase cultures of E. coli strain JM109. In this study, significant bactericidal activity was observed after E.coli cells were exposed to recombinant human lysozyme for 60min. Both native and recombinant human lysozyme displayed the same thermostability and resistance to degradation by low pH. The potential for using rice-derived lysozyme as an antimicrobial food supplement, particularly for infant formula and baby foods, is discussed.  相似文献   
60.
Optimization of a lead thiazole amide MF-152 led to the identification of potent bicyclic heteroaryl SCD1 inhibitors with good mouse pharmacokinetic profiles. In a view to target the liver for efficacy and to avoid SCD1 inhibition in the skin and eyes where adverse effects were previously observed in rodents, representative systemically-distributed SCD1 inhibitors were converted into liver-targeting SCD1 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号