首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   114篇
  1004篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   15篇
  2016年   11篇
  2015年   27篇
  2014年   25篇
  2013年   29篇
  2012年   23篇
  2011年   29篇
  2010年   25篇
  2009年   22篇
  2008年   26篇
  2007年   33篇
  2006年   26篇
  2005年   34篇
  2004年   23篇
  2003年   19篇
  2002年   20篇
  2001年   23篇
  2000年   18篇
  1999年   23篇
  1998年   11篇
  1996年   12篇
  1995年   10篇
  1992年   12篇
  1991年   23篇
  1990年   11篇
  1989年   10篇
  1988年   15篇
  1987年   13篇
  1986年   16篇
  1985年   11篇
  1984年   23篇
  1983年   12篇
  1982年   16篇
  1980年   10篇
  1979年   21篇
  1976年   17篇
  1975年   17篇
  1974年   17篇
  1973年   15篇
  1972年   14篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1968年   14篇
  1967年   12篇
  1966年   12篇
  1965年   9篇
排序方式: 共有1004条查询结果,搜索用时 15 毫秒
31.
Various sites of ferricyanide reduction were studied in spinach chloroplasts. It was found that in the presence of dibromothymoquinone a fraction of ferricyanide reduction was dibromothymoquinone sensitive, implying that ferricyanide can be reduced by photosystem I as well as photosystem II. To separate ferricyanide reduction sites in photosystem II, orthophenanthroline and dichlorophenyl dimethylurea inhibitions were compared at various pH's. It was noted that at low pH ferricyanide reduction was not completely inhibited by orthophenanthroline. At high pH's, however, inhibition of ferricyanide reduction by orthophenanthroline was complete. It was found that varying concentration of orthophenanthroline at a constant pH showed different degrees of inhibition. In the study of ferricyanide reduction by photosystem II various treatments affecting plastocyanin were performed. It was found that Tween-20 or KCN treatments which inactivated plastocyanin did not completely inactivate ferricyanide reduction. These data support the conclusion that ferricyanide accepts electrons both before and after plastoquinone in photosystem II.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyurea - MV methyl viologen - DBMIB 2,5-dibromothymoquinone - DMBQ 2,6-dimethyl benzoquinone - OP 1,10-orthophenanthroline - TMPD tetramethyl-p-phenylenediamine - PS 1 photosystem I - PS II photosystem II - SN sucrose-sodium chloride chloroplasts Supported by NSF Grant BMS 74-19689.  相似文献   
32.
C.L. Bering  R.A. Dilley  F.L. Crane 《BBA》1976,430(2):327-335
Lipophilic metal chelators inhibit various energy-transducing functions of chloroplasts. The following observations were made.1. Photophosphorylation coupled to any known mode of electron transfer, i.e. whole-chain noncyclic, the partial noncyclic Photosystem I or Photosystem II reactions, or cyclic, is inhibited by several lipophilic chelators, but not by hydrophilic chelators.2. The light- and dithioerythritol-dependent Mg2+-ATPase was also inhibited by the lipophilic chelators.3. Electron transport through either partial reaction, Photosystem I or Photosystem II was not inhibited by lipophilic chelators. Whole-chain coupled electron transport was inhibited by bathophenanthroline, and the inhibition was not reversed by uncouplers. The diketone chelators diphenyl propanedione and nonanedione inhibited the coupled, whole-chain electron transport and the inhibition was reversed by uncouplers, a pattern typical of energy transfer inhibitors.The electron transport inhibition site is localized in the region of plastoquinone → cytochrome f. This inhibition site is consistent with other recent work (Prince et al. (1975) FEBS Lett. 51, 108 and Malkin and Aparicio (1975) Biochem. Biophys. Res. Commun. 63, 1157) showing that a non-heme iron protein is present in chloroplasts having a redox potential near +290 mV. A likely position for such a component to function in electron transport would be between plastoquinone and cytochrome f, just where our data suggests there to be a functional metalloprotein.4. Some of the lipophilic chelators induce H+ leakiness in the chloroplast membrane, making interpretation of their phosphorylation inhibition difficult. However, 1–3 mM nonanedione does not induce significant H+ leakiness, while inhibiting ATP formation and the Mg2+-ATPase. Nonanedione, at those concentrations, causes a two- to four-fold increase in the extent of H+ uptake.5. These results are consistent with, but do not prove, the involvement of a non-heme iron or a metalloprotein in chloroplast energy transduction.  相似文献   
33.
34.
The short-term incubation of HeLa cells in the presence of diferric transferrin or ferricyanide, which are reduced externally by the transplasma membrane reductase, produces a stoichiometric decrease in NADH and increase in NAD+, which is stimulated by insulin. The NADP/NADPH ratio does not change during 15 min incubation with the oxidants. The total pyridine nucleotide pool of HeLa cells is not affected. Incubation with apotransferrin and ferrocyanide, which cannot act as oxidants for transmembrane electron transport, does not change the pyridine nucleotide concentrations in the cells. Our results show that NADH can act as the internal electron donor for the reduction of external oxidants by the transmembrane reductase. It appears that oxidation of NADH by the transmembrane electron transport using ferricyanide or iron transferrin as external electron acceptors is sufficient to stimulate growth in HeLa cells.  相似文献   
35.
Proton release from HeLa cells is stimulated by external oxidants for the transplasmalemma electron transport enzymes. These oxidants, such as ferricyanide and diferric transferrin, also stimulate cell growth. We now present evidence that proton release associated with the reduction of ferricyanide and diferric transferrin is through the Na+/H+ antiport. The stoichiometry of H+/e- release with diferric transferrin is over 50 to 1, which is greater than expected for oxidation of a protonated transmembrane electron carrier. Diferric transferrin induced proton release depends on external sodium and is inhibited by amiloride. Proton release is also inhibited when diferric transferrin reduction is inhibited by apotransferrin. A tightly coupled association between the redox system and the antiport is shown by sodium dependence and amiloride inhibition of diferric transferrin reduction. The results indicate a new role for ferric transferrin in growth stimulation by activation of the sodium-proton antiport.  相似文献   
36.
The digestion and absorption of protein by normal man   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   
37.
A system of preparation of rat hepatocytes with extended viability has been developed to study the role of hormones and other plasma components upon secretory protein synthesis. Hepatocytes maintained in minimal essential medium reduced the levels of all amino acids in the medium except the slowly catabolized amino acids leucine, isoleucine, and valine, which steadily increase as the result of catabolism of liver protein. Although the liver cells catabolize 10-15% of their own protein during a 20-h incubation, the cells continue to secrete protein in a linear fashion throughout the period. The effects of insulin, cortisol, and epinephrine on general protein synthesis, and specifically on fibrinogen and albumin synthesis, have been tested on cells from both normal rats and adrenalectomized rats. Cells from normal animals show preinduction of tyrosine amino transferase (TAT), having at the time of isolation a high level of enzyme which shows only an increase of approximately 60% upon incubation with cortisol. In contrast, cells from adrenalectomized animals initially have a low level of enzyme which increases fourfold over a period of 9 h. The effects of both epinephrine and cortisol on protein synthesis are also much larger in cells from adrenalectomized animals. After a delay of several hours, cortisol increases fibrinogen synthesis sharply, so that at the end of the 20-h incubation, cells treated with hormone have secreted nearly 2.5 times as much fibrinogen as control cells. The effect is specific; cortisol stimulates neither albumin secretion nor intracellular protein synthesis. The combination of cortisol and epinephrine strongly depresses albumin synthesis in both types of cells. Insulin enhances albumin and general protein synthesis but has little effect on fibrinogen synthesis.  相似文献   
38.
Peroxisomes from mouse liver were fractionated with Triton X-114, a procedure which yields a detergent phase consisting of proteins containing hydrophobic binding sites, and a nondetergent, or aqueous, phase containing hydrophilic proteins. When this method was applied to peroxisomes from control mice, catalase and fatty acyl-CoA oxidase distributed to the aqueous phase, whereas the integral membrane protein, PMP68, and the bifunctional protein were recovered exclusively in the detergent phase. Urate oxidase distributed intermediate between these two phases. With peroxisomes from mice treated with the peroxisome proliferator clofibrate, the bifunctional protein was recovered in both the detergent and the aqueous phases, and urate oxidase was shifted toward the aqueous phase. Other analyses of the subperoxisomal distribution of the bifunctional protein were consistent with a proportion of this protein being tightly associated with the peroxisomal membrane, or with some other uncharacterized, poorly soluble, component. Sucrose gradient centrifugation of the aqueous phase resulting from Triton X-114 fractionation of peroxisomes revealed that a major proportion of catalase, fatty acyl-CoA oxidase, the bifunctional protein, and other unidentified proteins behaved as if associated under these conditions. In this respect, use of a higher concentration of Triton X-114 for peroxisome fractionation led to the partitioning of some catalase and fatty acyl-CoA oxidase to the detergent phase, indicating the presence of some detergent-accessible hydrophobic binding sites even on these proteins. These data have been interpreted as indicating matrix protein associations in vivo, associations which may be responsive to proliferator treatment.  相似文献   
39.
40.
The long-term effectiveness of restored areas for biodiversity is poorly known for the majority of restored ecosystems worldwide. We quantified temporal changes in bird occurrence in restoration plantings of different ages and geometries, and compared observed patterns with a reference dataset from woodland remnants on the same farms as our plantings. Over time, bird species richness remained unchanged in spring but exhibited modest increases in winter. We found that wider plantings supported significantly greater bird species richness in spring and winter than narrow plantings. There was no evidence of a significant interaction between planting width and time. We recorded major temporal changes in the occurrence of a range of individual species that indicated a clear turnover of species as plantings matured. Our results further revealed marked differences in individual species occurrence between plantings and woodland remnants. Life-history attributes associated with temporal changes in the bird assemblage were most apparent in winter survey data, and included diet, foraging and nesting patterns, movement behaviour (e.g. migratory vs. dispersive), and body size. Differences in bird assemblages between plantings of different ages suggest that it is important that farms support a range of age classes of planted woodland, if the aim is to maximize the number of native bird species in restored areas. Our data also suggest that changes in the bird species occupying plantings of different ages can be anticipated in a broadly predictable way based on planting geometry (especially width) and key life-history attributes, particularly movement patterns and habitat and diet specialisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号