首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   113篇
  2020年   10篇
  2019年   11篇
  2017年   15篇
  2016年   11篇
  2015年   27篇
  2014年   25篇
  2013年   29篇
  2012年   23篇
  2011年   29篇
  2010年   25篇
  2009年   22篇
  2008年   26篇
  2007年   33篇
  2006年   26篇
  2005年   34篇
  2004年   23篇
  2003年   19篇
  2002年   20篇
  2001年   23篇
  2000年   18篇
  1999年   23篇
  1998年   11篇
  1996年   12篇
  1995年   10篇
  1992年   12篇
  1991年   23篇
  1990年   11篇
  1989年   10篇
  1988年   15篇
  1987年   13篇
  1986年   16篇
  1985年   11篇
  1984年   23篇
  1983年   12篇
  1982年   16篇
  1980年   10篇
  1979年   21篇
  1977年   8篇
  1976年   17篇
  1975年   17篇
  1974年   17篇
  1973年   15篇
  1972年   14篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1968年   14篇
  1967年   12篇
  1966年   12篇
  1965年   9篇
排序方式: 共有1003条查询结果,搜索用时 15 毫秒
171.
The heme of neuronal nitric-oxide synthase participates in oxygen activation but also binds self-generated NO during catalysis resulting in reversible feedback inhibition. We utilized point mutagenesis to investigate if a conserved tryptophan residue (Trp-409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Surprisingly, mutants W409F and W409Y were hyperactive compared with the wild type regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg, NADPH oxidation measurements showed that electron flux through the heme was actually slower in the Trp-409 mutants than in wild-type nNOS. However, little or no NO complex accumulated during NO synthesis by the mutants, as opposed to the wild type. This difference was potentially related to mutants forming unstable 6-coordinate ferrous-NO complexes under anaerobic conditions even in the presence of Arg and tetrahydrobiopterin. Thus, Trp-409 mutations minimize NO feedback inhibition by preventing buildup of an inactive ferrous-NO complex during the steady state. This overcomes the negative effect of the mutation on electron flux and results in hyperactivity. Conservation of Trp-409 among different NOS suggests that the ability of this residue to regulate heme reduction and NO complex formation is important for enzyme physiologic function.  相似文献   
172.
A control systems model of the vestibulo-ocular reflex (VOR) originally derived for yaw rotation about an eccentric axis (Crane et al. 1997) was applied to data collected during ambulation and dynamic posturography. The model incorporates a linear summation of an otolith response due to head translation scaled by target distance, adding to a semi-circular canal response that depends only on angular head rotation. The results of the model were compared with human experimental data by supplying head angular velocity as determined by magnetic search coil recording as the input for the canal branch of the model and supplying linear acceleration as determined by flux gate magnetometer measurements of otolith position. The model was fit to data by determining otolith weighting that enabled the model to best fit the data. We fit to the model experimental data from normal subjects who were: standing quietly, walking, running, or making active sinusoidal head movements. We also fit data obtained during dynamic posturography tasks of: standing on a platform sliding in a horizontal plane at 0.2 Hz, standing directly on a platform tilting at 0.1 Hz, and standing on the tilting platform buffered by a 5-cm thick foam rubber cushion. Each task was done with the subject attending a target approximately 500, 100, or 50 cm distant, both in light and darkness. The model accurately predicted the observed VOR response during each test. Greater otolith weighting was required for near targets for nearly all activities, consistent with weights for the otolith component found in previous studies employing imposed rotations. The only exceptions were for vertical axis motion during standing, sliding, and tilting when the platform was buffered with foam rubber. In the horizontal axis, the model always fit near target data better with a higher otolith component. Otolith weights were similar with the target visible and in darkness. The model predicts eye movement during both passive whole-body rotation and free head movement in space implying that the VOR is controlled by a similar mechanism during both situations. Factors such as vision, proprioception, and efference copy that are available during head free motion but not during whole-body rotation are probably not important to gaze stabilization during ambulation and postural stabilizing movement. The linearity of the canal-otolith interaction was tested by re-analysis of the whole body rotation data on which the model is based (Crane et al. 1997). Normalized otolith-mediated gain enhancement was determined for each axis of rotation. This analysis uncovered minor non-linearities in the canal-otolith interaction at frequencies above 1.6 Hz and when the axis of rotation was posterior to the head. Received: 11 March 1998 / Received in revised form: 1 March 1999  相似文献   
173.
Many of the latest trends in vaccine development are dependent on immunological adjuvants that mediate and promote a wide variety of immune responses. One promising adjuvant candidate, monophosphoryl lipid A (MPL) immunostimulant, is being investigated with many of these new vaccine approaches in either preclinical or clinical trials. This is possible because different vehicle formulations can significantly influence the type of immunological response MPL promotes. Procedures are provided for formulating MPL in an aqueous vehicle or an oil-in-water emulsion. These two MPL formulations can be beneficial for most vaccine approaches being investigated today.  相似文献   
174.
In beta cells from the pancreas, ATP-sensitive potassium channels, or KATP channels, are composed of two subunits, SUR1 and KIR6.2, assembled in a (SUR1/KIR6.2)4 stoichiometry. The correct stoichiometry of channels at the cell surface is tightly regulated by the presence of novel endoplasmic reticulum (ER) retention signals in SUR1 and KIR6.2; incompletely assembled KATP channels fail to exit the ER/cis-Golgi compartments. In addition to these retrograde signals, we show that the C terminus of SUR1 has an anterograde signal, composed in part of a dileucine motif and downstream phenylalanine, which is required for KATP channels to exit the ER/cis-Golgi compartments and transit to the cell surface. Deletion of as few as seven amino acids, including the phenylalanine, from SUR1 markedly reduces surface expression of KATP channels. Mutations leading to truncation of the C terminus of SUR1 are one cause of a severe, recessive form of persistent hyperinsulinemic hypoglycemia of infancy. We propose that the complete loss of beta cell KATP channel activity seen in this form of hyperinsulinism is a failure of KATP channels to traffic to the plasma membrane.  相似文献   
175.
176.
Phosphorylation of CheY promotes association with the flagellar motor and ultimately controls the directional bias of the motor. However, biochemical studies of activated CheY‐phosphate have been challenging due to the rapid hydrolysis of the aspartyl‐phosphate in vitro. An inert analog of Tm CheY‐phosphate, phosphono‐CheY, was synthesized by chemical modification and purified by cation‐exchange chromatography. Changes in HPLC retention times, chemical assays for phosphate and free thiol, and mass spectrometry experiments demonstrate modification of Cys54 with a phosphonomethyl group. Additionally, a crystal structure showed electron density for the phosphonomethyl group at Cys54, consistent with a modification at that position. Subsequent biochemical experiments confirmed that protein crystals were phosphono‐CheY. Isothermal titration calorimetry and fluorescence polarization binding assays demonstrated that phosphono‐CheY bound a peptide derived from FliM, a native partner of CheY‐phosphate, with a dissociation constant of ~29 µM, at least sixfold more tightly than unmodified CheY. Taken together these results suggest that Tm phosphono‐CheY is a useful and unique analog of Tm CheY‐phosphate.  相似文献   
177.
178.
Chung K  Crane MM  Lu H 《Nature methods》2008,5(7):637-643
Microscopy, phenotyping and visual screens are frequently applied to model organisms in combination with genetics. Although widely used, these techniques for multicellular organisms have mostly remained manual and low-throughput. Here we report the complete automation of sample handling, high-resolution microscopy, phenotyping and sorting of Caenorhabditis elegans. The engineered microfluidic system, coupled with customized software, has enabled high-throughput, high-resolution microscopy and sorting with no human intervention and may be combined with any microscopy setup. The microchip is capable of robust local temperature control, self-regulated sample-loading and automatic sample-positioning, while the integrated software performs imaging and classification of worms based on morphological and intensity features. We demonstrate the ability to perform sensitive and quantitative screens based on cellular and subcellular phenotypes with over 95% accuracy per round and a rate of several hundred worms per hour. Screening time can be reduced by orders of magnitude; moreover, screening is completely automated.  相似文献   
179.
Drug screening is often limited to cell-free assays involving purified enzymes, but it is arguably best applied against systems that represent disease states or complex physiological cellular networks. Here, we describe a high-content, cell-based drug discovery platform based on phosphospecific flow cytometry, or phosphoflow, that enabled screening for inhibitors against multiple endogenous kinase signaling pathways in heterogeneous primary cell populations at the single-cell level. From a library of small-molecule natural products, we identified pathway-selective inhibitors of Jak-Stat and MAP kinase signaling. Dose-response experiments in primary cells confirmed pathway selectivity, but importantly also revealed differential inhibition of cell types and new druggability trends across multiple compounds. Lead compound selectivity was confirmed in vivo in mice. Phosphoflow therefore provides a unique platform that can be applied throughout the drug discovery process, from early compound screening to in vivo testing and clinical monitoring of drug efficacy.  相似文献   
180.
Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号