首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   14篇
  2003年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   11篇
  1991年   11篇
  1990年   28篇
  1989年   21篇
  1988年   35篇
  1987年   27篇
  1986年   18篇
  1985年   12篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1979年   2篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
121.
The mechanism by which human alpha-thrombin activates the Na+/H+ exchanger was studied in cultured neonatal rat aortic smooth muscle cells. Thrombin (0.4 unit/ml) caused a rapid cell acidification followed by a slow, amiloride-inhibitable alkalinization (0.10-0.14 delta pHi above base line). In protein kinase C down-regulated cells (exposed to phorbol 12-myristate 13-acetate for 24 or 72 h), the delta pHi induced by thrombin was only partially attenuated. This protein kinase C-independent activation of the Na+/H+ exchanger was blocked by pertussis toxin (islet activating protein (IAP)), reducing delta pHi by 50%. IAP did not directly inhibit Na+/H+ exchange activity as assessed by the response to intracellular acid loading. Thrombin also stimulated arachidonic acid release by 2.5 fold and inositol trisphosphate release by 6.2 fold. IAP inhibited both of these activities by 50-60%. Intracellular Ca2+ chelation with 120 microM quin2 prevented the thrombin-induced Ca2+ spike, inhibited thrombin-induced arachidonic acid release by 75%, and inhibited thrombin-induced activation of the Na+/H+ exchanger in protein kinase C-deficient cells by 65%. Increased intracellular [Ca2+] alone was not sufficient to activate the Na+/H+ exchanger, since ionomycin (0.3-1.5 microM) failed to elevate cell pH significantly. 10 microM indomethacin inhibited thrombin-induced delta pHi in both control and protein kinase C down-regulated cells by 30-50%. Thus, thrombin can activate the Na+/H+ exchanger in vascular smooth muscle cells by a Ca2+-dependent, pertussis toxin-sensitive pathway which does not involve protein kinase C.  相似文献   
122.
N Cook  T M Dexter  B I Lord  E J Cragoe  Jr    A D Whetton 《The EMBO journal》1989,8(10):2967-2974
We have prepared a population of bone marrow cells that is highly enriched in neutrophil/macrophage progenitor cells (GM-CFC). Four distinct haemopoietic growth factors can stimulate the formation of mature cells from this population, although the proportions of neutrophils and/or macrophages produced varied depending on the growth factor employed: interleukin 3 (IL-3) and granulocyte/macrophage colony-stimulating factor (GM-CSF) stimulated the formation of colonies containing both neutrophils and macrophages; macrophage colony-stimulating factor (M-CSF) produced predominantly macrophage colonies; and granulocyte colony-stimulating factor (G-CSF) promoted neutrophil colony formation. Combinations of these four growth factors did not lead to any additive or synergistic effect on the number of colonies produced in clonal soft agar assays, indicating the presence of a common set of cells responsive to all four haemopoietic growth factors. These enriched progenitor cells therefore represent an ideal population to study myeloid growth-factor-stimulated survival, proliferation and development. Using this population we have examined the molecular signalling mechanisms associated with progenitor cell proliferation. We have shown that modulation of cyclic AMP levels has no apparent role in GM-CFC proliferation, whereas phorbol esters and/or Ca2+ ionophore can stimulate DNA synthesis, indicating a possible role for protein kinase C activation and increased cytosolic Ca2+ levels in the proliferation of these cells. The lack of ability of all four myeloid growth factors to mobilize intracellular Ca2+ infers that these effects are not achieved via inositol lipid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
123.
The aim of this study was to identify and purify the Na+-H+ exchanger from rabbit renal brush border membranes by use of affinity chromatography. Triton-solubilized membranes were equilibrated with an affinity matrix consisting of the amiloride analogue A35 (5-N-(3-aminophenyl)amiloride) covalently coupled to Sepharose CL-4B beads through a triglycine spacer arm. The matrix was then washed extensively with buffer and sequentially eluted with buffer, buffer containing 5 mM amiloride, and 1% sodium dodecyl sulfate (SDS). Eluates were concentrated and subjected to SDS-polyacrylamide gel electrophoresis. The silver-stained gel revealed a 25-kDa protein that was not visible in the initial solubilized brush border membrane extract, was not eluted from the affinity matrix by buffer alone, but was eluted with 5 mM amiloride. A subsequent elution with 1% SDS did not release any more of the 25-kDa protein, indicating that it had been completely eluted from the affinity matrix by amiloride. The presence of 5 mM amiloride during equilibration of the solubilized brush border extract with the affinity matrix completely blocked adsorption of the 25-kDa protein. The relative abundance of this protein correlated closely with Na+-H+ exchange activity when preparations of cortical brush border membrane vesicles, outer medullary brush border membrane vesicles, and cortical basolateral membrane vesicles were compared. Moreover, binding of the protein to the affinity matrix was inhibited by amiloride and amiloride analogues with a rank order identical to that for inhibition of Na+-H+ exchange activity. These findings strongly suggest that the 25-kDa protein is a structural component of the Na+-H+ exchanger.  相似文献   
124.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
125.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   
126.
Depletion of intracellular K+ has been reported to result in an arrest of the formation of coated pits in human fibroblasts (Larkin, J.M., M.S. Brown, J.L. Goldstein, and R.G.W. Anderson, 1983, Cell, 33:273-285). We have studied the effects of K+ depletion on the cytotoxicities of ricin, Pseudomonas exotoxin A, and diphtheria toxin in Chinese hamster ovary (CHO) cells. The cytotoxicities of ricin and Pseudomonas toxin were enhanced in K+-depleted CHO cells whereas the cytotoxicity of diphtheria toxin was reduced by K+ depletion. The effects of NH4Cl on the cytotoxicities of ricin, Pseudomonas toxin, and diphtheria toxin were found to be similar to those of K+ depletion, and there were no additive or synergistic effects on ricin cytotoxicity by NH4Cl in K+-depleted medium. The enhancement of ricin cytotoxicity by K+ depletion could be completely reversed by the addition of K+, Rb+, and partially by the addition of Cs+, before the ricin treatment, whereas Li+ was ineffective. These protective effects of K+ or Rb+ requires a functional Na+/K+ ATPase. CHO cells grown in K+-depleted media were found to contain 6.3-fold increase in intracellular Na+ level, concomitant with a 10-fold reduction in intracellular K+ level. The enhanced cytotoxicity of ricin in K+-free medium and the increased uptake of Na+ could be abolished by amiloride or amiloride analogues, which are known to be potent inhibitors of the Na+/H+ antiport system. Our results suggest that a depletion of intracellular K+ results in an influx of Na+, which is accompanied by the extrusion of H+. Consequently, there is an alkalinization of the cytosol and the ricin-containing endosomes. As a result, ricin is more efficiently released from the endosomes in-K+-depleted cells. Results from the studies of the binding, internalization, and degradation of 125I-ricin, and the kinetics of inhibition of protein synthesis by ricin in K+-depleted cells are consistent with this working hypothesis.  相似文献   
127.
Summary Several new amiloride analogues and two reported photoaffinity analogues were tested for irreversible inhibition of short-circuit current,I sc, in toad bladder. Bromoamiloride, a photoaffinity analogue, induced 40% irreversible inhibition at 500 m after irradiation with ultraviolet light 320 nm. Iodoamiloride caused no irreversible inhibition. Of the new analogues tested, only 3,5-diamino-6-chloro-N-[(phenylamino) aminomethylene] pyrazinecarboxamide,phenamil, irreversibly inhibitedI sc at concentrations of 0.05 to 5 m when added to the mucosal solution. Irreversible inhibition ofI sc by phenamil may be attributed to specific blockage of the mucosal sodium channels, which depended on: 1) time of exposure; 2) mucosal pH: 3) mucosal sodium concentration. For example, 5 m phenamil irreversibly inhibitedI sc by 38% in 103mm Na at pH 8.6 and nearly 75% in 30mm Na at pH 6.4 after a 40-min exposure. Irreversible inhibition occurred in two phases with time constants of 10 min and approximately 140 min. Due to its irreversible nature, phenamil may be used to measure channel density.  相似文献   
128.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion induced by various agonists in human platelets. 3', 4'-dichlorobenzamil (DCB) and to a lesser extent, 2', 4'-dimethylbenzamil (DMB), which in many cells highly specific inhibitors of Na+/Ca2+-pump, inhibited the phosphorylation of 47K- and 20K-dalton proteins and serotonin secretion in human platelets independently of the action on the pump. DCB also induced dephosphorylation of 47K and 20K after the phosphorylation of these proteins by thrombin and released serotonin by itself.  相似文献   
129.
Electrical potential driven 22Na+ fluxes were measured in membrane vesicles prepared from a number of cultured and naturally occurring epithelia. In all preparations a rheogenic pathway blocked by 200 microM (but not by 1.5 microM) amiloride was noted. This transporter was characterized in membranes prepared from cultured LLC-PK1 cells. In this preparation more than 50% of the rheogenic 22Na+ uptake was blocked by amiloride (IC50 approximately 30 microM), phenamil (IC50 approximately 66 microM), or ethylisopropylamiloride (IC50 approximately 5 microM). This amiloride-sensitive flux was not seen if the vesicles were partially depolarized by external Na+ or K+. It could not be driven by a pH gradient, did not require the presence of Ca2+, sugars, or amino acids, and showed little dependence on temperature (25 versus 0 degrees C). The data suggest the existence of an epithelial amiloride-blockable Na+ transporter different from the previously characterized Na+ channel, Na+/H+ and Na+/Ca2+ exchangers, and the Na+-hexose co-transporter. In rat kidney cortex membranes prepared by Mn2+ precipitation, this transporter is primarily located in the brush-border fraction.  相似文献   
130.
Movement of extracellular Ca2+ is required for the sustained increase in [Ca2+]i necessary for T cell activation. However, the mechanisms mediating mitogen-stimulated Ca2+ movement into T cells have not been completely delineated. To explore the possibility that a Na(+)-dependent Ca2+ (Na+/Ca2+) exchanger might play a role in the mitogen-induced increases in [Ca2+]i required for T cell activation, the effects of inhibitors of this exchanger were examined. Inhibitors of Na+/Ca2+ exchange suppressed the sustained increase in [Ca2+]i stimulated by ligation of the CD3-TCR complex, but did not affect mobilization of intracellular Ca2+ stores. Consistent with the importance of this prolonged increase in [Ca2+]i in T cell activation, Na+/Ca2+ exchange inhibitors, but not inhibitors of the Na+/H+ antiporter, inhibited DNA synthesis stimulated by immobilized anti-CD3 mAb. Inhibition only occurred when the agents were present during the first hours after stimulation. These agents also inhibited IL-2 production, but not expression of the IL-2R or of an early activation Ag, 4F2. Inhibition of IL-2 production did not account for the inhibition of T cell proliferation as addition of exogenous IL-2 or phorbol ester (PDB) did not overcome the inhibition. In contrast, activation pathways that are not thought to require an increase in [Ca2+]i such as IL-1 + PDB or engagement of CD28 in the presence of PDB were less sensitive to the suppressive effects of inhibitors of Na+/Ca2+ exchange. Thus, proliferation induced by these stimuli was not suppressed by low concentrations of these inhibitors and IL-2 production induced by mAb to CD28 + PDB was not inhibited by any concentration of inhibitors of Na+/Ca2+ exchange. These results suggest that stimulation of a Ca2+ transporter with the same spectrum of inhibition as the Na+/Ca2+ exchanger in other tissues mediates the sustained increase in [Ca2+]i required for T cell activation after CD3 ligation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号