首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   27篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   19篇
  2011年   21篇
  2010年   16篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   15篇
  2004年   14篇
  2003年   10篇
  2002年   13篇
  2001年   8篇
  2000年   13篇
  1999年   6篇
  1998年   4篇
  1997年   12篇
  1996年   9篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1987年   7篇
  1986年   6篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   9篇
  1973年   3篇
  1971年   2篇
  1969年   2篇
  1967年   3篇
排序方式: 共有376条查询结果,搜索用时 171 毫秒
131.

Background

The inflammatory response is prominent in the pathogenesis of dermal leishmaniasis. We hypothesized that regulatory T cells (Tregs) may be diminished in chronic dermal leishmaniasis (CDL) and contribute to healing during treatment.

Methodology/Principal Findings

The frequency and functional capacity of Tregs were evaluated at diagnosis and following treatment of CDL patients having lesions of ≥6 months duration and asymptomatically infected residents of endemic foci. The frequency of CD4+CD25hi cells expressing Foxp3 or GITR or lacking expression of CD127 in peripheral blood was determined by flow cytometry. The capacity of CD4+CD25+ cells to inhibit Leishmania-specific responses was determined by co-culture with effector CD4+CD25 cells. The expression of FOXP3, IFNG, IL10 and IDO was determined in lesion and leishmanin skin test site biopsies by qRT-PCR. Although CDL patients presented higher frequency of CD4+CD25hiFoxp3+ cells in peripheral blood and higher expression of FOXP3 at leishmanin skin test sites, their CD4+CD25+ cells were significantly less capable of suppressing antigen specific-IFN-γ secretion by effector cells compared with asymptomatically infected individuals. At the end of treatment, both the frequency of CD4+CD25hiCD127 cells and their capacity to inhibit proliferation and IFN-γ secretion increased and coincided with healing of cutaneous lesions. IDO was downregulated during healing of lesions and its expression was positively correlated with IFNG but not FOXP3.

Conclusions/Significance

The disparity between CD25hiFoxp3+ CD4 T cell frequency in peripheral blood, Foxp3 expression at the site of cutaneous responses to leishmanin, and suppressive capacity provides evidence of impaired Treg function in the pathogenesis of CDL. Moreover, the concurrence of increased Leishmania-specific suppressive capacity with induction of a CD25hiCD127 subset of CD4 T cells during healing supports the participation of Tregs in the resolution of chronic dermal lesions. Treg subsets may therefore be relevant in designing immunotherapeutic strategies for recalcitrant dermal leishmaniasis caused by Leishmania (Viannia) species.  相似文献   
132.
133.
On May 9-10, 2011, the Walter Reed Army Institute of Research, as the Army Center of Excellence for Infectious Disease, assembled over a dozen leaders in areas related to research into the communities of microorganisms which colonize and infect traumatic wounds. The objectives of the workshop were to obtain guidance for government researchers, to spur research community involvement in the field of traumatic wound research informed by a microbiome perspective, and to spark collaborative efforts serving the Wounded Warriors and similarly wounded civilians. During the discussions, it was made clear that the complexity of these infections will only be met by developing a new art of clinical practice that engages the numerous microbes and their ecology. It requires the support of dedicated laboratories and technologists who advance research methods such as community sequencing, as well as the kinds of data analysis expertise and facilities. These strategies already appear to be bearing fruit in the clinical management of chronic wounds. There are now funding announcements and programs supporting this area of research open to extramural collaborators.  相似文献   
134.
Cholera toxin (CT) holotoxin must be activated to intoxicate host cells. This process requires the intracellular dissociation of the enzymatic CTA1 domain from the holotoxin components CTA2 and B5, followed by subsequent interaction with the host factor ADP ribosylation factor 6 (ARF6)-GTP. We report the first NMR-based solution structural data for the CT enzymatic domain (CTA1). We show that this free enzymatic domain partially unfolds at the C-terminus and binds its protein partners at both the beginning and the end of this activation process. Deviations from random coil chemical shifts (Δδcoil) indicate helix formation in the activation loop, which is essential to open the toxin's active site and occurs prior to its association with human protein ARF6. We performed NMR titrations of both free CTA1 and an active CTA1:ARF6-GTP complex with NAD+, which revealed that the formation of the complex does not significantly enhance NAD+ binding. Partial unfolding of CTA1 is further illustrated by using 4,4′-bis(1-anilinonaphthalene 8-sulfonate) fluorescence as an indicator of the exposed hydrophobic character of the free enzyme, which is substantially reduced when bound to ARF6-GTP. We propose that the primary role of ARF6's allostery is to induce refolding of the C-terminus of CTA1. Thus, as a folded globular toxin complex, CTA1 escapes the chaperone and proteasomal components of the endoplasmic reticulum associated degradation pathway in the cytosol and then proceeds to ADP ribosylate its target Gsα, triggering the downstream events associated with the pathophysiology of cholera.  相似文献   
135.
136.
1. We provide the first theoretical analysis of multihost disease dynamics to incorporate social behaviour and contrasting rates of within- and between-group disease transmission. 2. A stochastic susceptible-infected-recovered (SIR) model of disease transmission involving one to three sympatric species was built to mimic the 1994 Serengeti canine distemper virus outbreak, which infected a variety of carnivores with widely ranging social structures. The model successfully mimicked the erratic and discontinuous spatial pattern of lion deaths observed in the Serengeti lions under a reasonable range of parameter values, but only when one to two other species repeatedly transmitted the virus to the lion population. 3. The outputs from our model suggest several principles that will apply to most directly transmitted multihost pathogens: (i) differences in social structure can significantly influence the size, velocity and spatial pattern of a multihost epidemic; and (ii) social structures that permit higher intraspecific neighbour-to-neighbour transmission are the most likely to transmit disease to other species; whereas (iii) species with low neighbour-to-neighbour intraspecific transmission suffer the greatest costs from interspecific transmission.  相似文献   
137.
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.  相似文献   
138.
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.  相似文献   
139.
Amphiphysin I (amphI) is dephosphorylated by calcineurin during nerve terminal depolarization and synaptic vesicle endocytosis (SVE). Some amphI phosphorylation sites (phosphosites) have been identified with in vitro studies or phosphoproteomics screens. We used a multifaceted strategy including 32P tracking to identify all in vivo amphI phosphosites and determine their relative abundance and potential relevance to SVE. AmphI was extracted from 32P-labeled synaptosomes, phosphopeptides were isolated from proteolytic digests using TiO2 chromatography, and mass spectrometry revealed 13 sites: serines 250, 252, 262, 268, 272, 276, 285, 293, 496, 514, 539, and 626 and Thr-310. These were distributed into two clusters around the proline-rich domain and the C-terminal Src homology 3 domain. Hierarchical phosphorylation of Ser-262 preceded phosphorylation of Ser-268, -272, -276, and -285. Off-line HPLC separation and two-dimensional tryptic mapping of 32P-labeled amphI revealed that Thr-310, Ser-293, Ser-285, Ser-272, Ser-276, and Ser-268 contained the highest 32P incorporation and were the most stimulus-sensitive. Individually Thr-310 and Ser-293 were the most abundant phosphosites, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non-proline-directed kinases, Ser-626, -250, -252, and -539, contained low amounts of 32P and were not depolarization-responsive. At least one alternatively spliced amphI isoform was identified in synaptosomes as being constitutively phosphorylated because it did not incorporate 32P during the 1-h labeling period. Multiple phosphosites from amphI-co-migrating synaptosomal proteins were also identified, including SGIP (Src homology 3 domain growth factor receptor-bound 2 (Grb2)-like (endophilin)-interacting protein 1), AAK1, eps15R, MAP6, alpha/beta-adducin, and HCN1. The results reveal two sets of amphI phosphosites that are either dynamically turning over or constitutively phosphorylated in nerve terminals and improve understanding of the role of individual amphI sites or phosphosite clusters in synaptic SVE.  相似文献   
140.
A hallmark assumption of traditional approaches to disease modelling is that individuals within a given population mix uniformly and at random. However, this assumption does not always hold true; contact heterogeneity or preferential associations can have a substantial impact on the duration, size, and dynamics of epidemics. Contact heterogeneity has been readily adopted in epidemiological studies of humans, but has been less studied in wildlife. While contact network studies are becoming more common for wildlife, their methodologies, fundamental assumptions, host species, and parasites vary widely. The goal of this article is to review how contact networks have been used to study macro‐ and microparasite transmission in wildlife. The review will: (i) explain why contact heterogeneity is relevant for wildlife populations; (ii) explore theoretical and applied questions that contact networks have been used to answer; (iii) give an overview of unresolved methodological issues; and (iv) suggest improvements and future directions for contact network studies in wildlife.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号