首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   21篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   7篇
  1998年   13篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   13篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1979年   4篇
  1978年   2篇
  1977年   9篇
  1976年   10篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1960年   2篇
  1924年   1篇
  1922年   1篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
141.
This white paper by eighty members of the Complex Trait Consortium presents a community's view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?  相似文献   
142.
143.
The parallel rod floor test is a new model of ataxia in mice. It allows the simultaneous measurement of ataxia and locomotor activity. This protocol is designed for researchers examining ethanol-induced motor incoordination in mice, but it should be applicable to other sedative/hypnotic drugs and to testing cerebellar mutant mice or mice with engineered genetic defects. This protocol takes 3 d, with the time per day depending on how many animals are tested. The test allows researchers to quantify differences in motor coordination among genotypes of mice that may differ in locomotor activity. Unlike many other methods for assessing incoordination, the parallel rod floor test yields similar patterns of genetic sensitivity across a range of variant forms of the apparatus.  相似文献   
144.
Conditioned fear and anxiety-like behaviors have many similarities at the neuroanatomical and pharmacological levels, but their genetic relationship is less well defined. We used short-term selection for contextual fear conditioning (FC) to produce outbred mouse lines with robust genetic differences in FC. The high and low selected lines showed differences in fear learning that were stable across various training parameters and were not secondary to differences in sensitivity to the unconditioned stimulus (foot shock). They also showed a divergence in fear potentiated startle, indicating that differences induced by selection generalized to another measure of fear learning. However, there were no differences in performance in a Pavlovian approach conditioning task or the Morris water maze, indicating no change in general learning ability. The high fear learning line showed greater anxiety-like behavior in the open field and zero maze, confirming a genetic relationship between FC and anxiety-like behavior. Gene expression analysis of the amygdala and hippocampus identified genes that were differentially expressed between the two lines. Quantitative trait locus (QTL) analysis identified several chromosomal regions that may underlie the behavioral response to selection; cis-acting expression QTL were identified in some of these regions, possibly identifying genes that underlie these behavioral QTL. These studies support the validity of a broad genetic construct that includes both learned fear and anxiety and provides a basis for further studies aimed at gene identification.  相似文献   
145.
Perforin-mediated cytotoxicity is an essential host defense, in which defects contribute to tumor development and pathogenic disorders including autoimmunity and autoinflammation. How perforin (PFN) facilitates intracellular delivery of pro-apoptotic and inflammatory granzymes across the bilayer of targets remains unresolved. Here we show that cellular susceptibility to granzyme B (GzmB) correlates with rapid PFN-induced phosphatidylserine externalization, suggesting that pores are formed at a protein-lipid interface by incomplete membrane oligomers (or arcs). Supporting a role for these oligomers in protease delivery, an anti-PFN antibody (pf-80) suppresses necrosis but increases phosphatidylserine flip-flop and GzmB-induced apoptosis. As shown by atomic force microscopy on planar bilayers and deep-etch electron microscopy on mammalian cells, pf-80 increases the proportion of arcs which correlates with the presence of smaller electrical conductances, while large cylindrical pores decline. PFN appears to form arc structures on target membranes that serve as minimally disrupting conduits for GzmB translocation. The role of these arcs in PFN-mediated pathology warrants evaluation where they may serve as novel therapeutic targets.The cytotoxic cell granule-secretory pathway depends on perforin (PFN) to deliver granzyme (Gzm) proteases to the cytosol of target cells where they induce apoptosis and other biological effects, such as inflammation.1 Ring-shaped transmembrane PFN pores hereafter called ‘cylindrical pores'', are presumed to act as the gateway for cytosolic entry, either at the plasma membrane or after endocytosis.2, 3, 4 In either case the highly cationic Gzms are thought to diffuse through these cylindrical pores formed by poly-PFN. Nevertheless, a mechanistic understanding of the phenomenon (how the cationic globular protein exchanges from its carrier proteoglycan, serglycin, to the pore and crosses the plasma and/or vesicular membranes) has been lacking due to limitations in imaging technology and in our detailed understanding of the molecular forms that PFN may adopt following interaction with a target cell plasma membrane.Here we show under conditions where cylindrical pore formation is minimal,5 that granzyme B (GzmB) translocation readily occurs. We previously demonstrated that a prelude to granzyme translocation is PFN-mediated, Ca-independent phosphatidylserine (PS) externalization (flip-flop) measured by annexin-V and lactadherin binding.6 This rapid PS flip-flop also occurs when mouse CD8 cells contact antigen-pulsed target cells. Inasmuch as the proteinaceous cylinders offer a formidable barrier to lipid flow, we have speculated that the observed movement of anionic phospholipids to the external leaflet is due to the formation of proteo-lipidic structures, which consists of oligomerized PFN monomers bearing an arc morphology and plasma membrane lipids.6, 7, 8In the work reported here, the topology of PFN embedded into homogeneous planar bilayers and tumor cell plasma membranes was imaged by atomic force microscopy (AFM) and deep etch electron microscopy (DEEM), respectively. Further, the influence of an anti-human PFN mAb (pf-80) that rescues target cells from necrosis,9 was examined. The AFM data show that PFN forms arcs as well as rings in planar bilayers, while conductance measurements across equivalent membranes in parallel experiments measured functional pore sizes consistent with these varied structures. The pf-80 mAb increased the frequency of arc formation and reduced conductance values. Interestingly, PS flip-flop and granzyme delivery were both increased in target cells after PFN oligomerization was interrupted by the pf-80 mAb. A similar effect was seen in T24 bladder carcinoma cells imaged by DEEM. Treatment with PFN leads to deposition of rings (barrel stave pores) and arcs and the pf-80 mAb increased the ratio of arcs to rings on the surface of these cells. We suggest that the observed protein arcs function as toroidal pores in whole cells, explaining PS flip-flop, and act as focal points for granzyme translocation across lipid bilayer.  相似文献   
146.
Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.  相似文献   
147.
The High Drinking in the Dark (HDID) mice have been selectively bred for reaching high blood ethanol concentrations (BECs) following the limited access Drinking in the Dark (DID) test. We have shown previously that mice from the first HDID replicate line (HDID‐1) drink in larger, but not longer, ethanol drinking bouts than the low‐drinking HS/Npt control mice when consuming modest amounts in the DID test. Here, we assessed drinking microstructure in HDID‐1 mice during binge‐like levels of ethanol intake using a lickometer system. Mice from both HDID replicates (HDID‐1 and ‐2) and HS mice were also given three DID tests (single‐bottle ethanol, two‐bottle choice and single‐bottle saccharin) using a continuously recording BioDAQ system to determine whether there are selection‐dependent changes in drinking microstructure. Larger ethanol bout size in the HDID‐1 mice than the HS mice was found to be due to a larger lick volume in these mice. HDID‐1 and HDID‐2 mice were also seen to have different drinking microstructures that both resulted in high intake and high BECs. The HDID‐1 mice drank in larger ethanol bouts than HS, whereas HDID‐2 mice drank in more frequent bouts. This pattern was also seen in two‐bottle choice DID. The HDID‐2 mice had a high bout frequency for all fluid types tested, whereas the large bout size phenotype of the HDID‐1 mice was specific to alcohol. These findings suggest that selection for drinking to intoxication has resulted in two distinct drinking microstructures, both of which lead to high BECs and high ethanol intake.  相似文献   
148.
Protein kinase C (PKC) is involved in many neuroadaptive responses to ethanol in the nervous system. PKC activation results in translocation of the enzyme from one intracellular site to another. Compartmentalization of PKC isozymes is regulated by targeting proteins such as receptors for activated C kinase (RACKs). It is possible, therefore, that ethanol-induced changes in the function and compartmentalization of PKC isozymes could be due to changes in PKC targeting proteins. Here we study the response of the targeting protein RACK1 and its corresponding kinase betaIIPKC to ethanol, and propose a novel mechanism to explain how ethanol modulates signaling cascades. In cultured cells, ethanol induces movement of RACK1 to the nucleus without affecting the compartmentalization of betaIIPKC. Ethanol also inhibits betaIIPKC translocation in response to activation. These results suggest that ethanol inhibition of betaIIPKC translocation is due to miscompartmentalization of the targeting protein RACK1. Similar events occurred in mouse brain. In vivo exposure to ethanol caused RACK1 to localize to nuclei in specific brain regions, but did not affect the compartmentalization of betaIIPKC. Thus, some of the cellular and neuroadaptive responses to ethanol may be related to ethanol-induced movement of RACK1 to the nucleus, thereby preventing the translocation and corresponding function of betaIIPKC.  相似文献   
149.
M J Crabbe  D J Evans  J W Almond 《FEBS letters》1990,271(1-2):194-198
We have used laboratory-based molecular modelling to identify structural features of antigen chimaeras of poliovirus expressing epitopes from human immunodeficiency virus (HIV-1) that may affect virus viability. Chimaeras were constructed by replacement of antigenic site 1 of VP1 by sequences corresponding to epitopes from HIV-1. Loop volume, estimated by approximating the loop to an ellipsoid was significantly (P less than 0.001) lower in viable (2062.1 A3 +/- 400.2) than in non-viable (3617 A3 +/- 650.7) constructs. Our results suggest that viable virus will only be formed when antigen chimeras modified at antigenic site of VP1 have a loop occupying a similar volume in space to that occupied by the antigenic site 1 loop. In addition, the modified loop must fit with the peptide bond angles and distances at the top of the beta-barrel of VP1.  相似文献   
150.
Molecular modelling of brefeldin A and its derivatives shows that the presence of a rigid and planar lactone ring conformation is necessary for cytotoxic and anti-fungal activity. Cytotoxic compounds had lactone ring torsion angles of −28.77±6.13°, while non-cytotoxic compounds had torison angles of −88.25±14.6°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号