首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3826篇
  免费   598篇
  国内免费   11篇
  4435篇
  2021年   49篇
  2019年   40篇
  2018年   46篇
  2016年   59篇
  2015年   114篇
  2014年   120篇
  2013年   139篇
  2012年   176篇
  2011年   188篇
  2010年   142篇
  2009年   105篇
  2008年   156篇
  2007年   150篇
  2006年   134篇
  2005年   129篇
  2004年   133篇
  2003年   115篇
  2002年   138篇
  2001年   123篇
  2000年   113篇
  1999年   100篇
  1998年   52篇
  1997年   46篇
  1996年   50篇
  1995年   44篇
  1994年   53篇
  1993年   42篇
  1992年   88篇
  1991年   92篇
  1990年   76篇
  1989年   81篇
  1988年   96篇
  1987年   76篇
  1986年   72篇
  1985年   56篇
  1984年   52篇
  1983年   51篇
  1982年   39篇
  1981年   54篇
  1980年   43篇
  1979年   62篇
  1978年   47篇
  1977年   46篇
  1976年   40篇
  1975年   37篇
  1974年   61篇
  1973年   60篇
  1972年   39篇
  1970年   36篇
  1967年   39篇
排序方式: 共有4435条查询结果,搜索用时 15 毫秒
11.
12.
Somatic cell heterokaryons derived from normal human fibroblasts which had different glucose-6-phosphate dehydrogenase (G6PD) electrophoretic variants, types A and B, were examined for their G6PD pattern. A hybrid band of activity with intermediate migration, in addition to the A and B bands, was observed in such heterokaryons. These results directly demonstrate that enzyme subunit complementation can take place in somatic cell heterokaryons, and suggest that this technique may be important for elucidating the molecular basis of the genetic heterogeneity seen with many human single enzyme defects.  相似文献   
13.
Summary The allosteric effects of the erythrocytic nucleoside triphosphates (NTP) and of proton concentrations were investigated by precise measurement of Hb–O2 equilibria of tench hemoglobin (including extreme, high and low saturation ranges) and analysed in terms of the MWC two state model and the Adair four step oxygenation theory.At low concentrations (NTP/Hb ratio=1.0, and pH>7.3) ATP, GTP and protons decrease Hb–O2 affinity by increasing the allosteric constantL and reducingK T, the association constant1 of the deoxy, tense state of the Hb, without significantly affecting that (K R) of the oxy state, increasing the free energy of cooperativity (G). High concentrations of these effectors, however, also reduceK R. The greater sensitivity of the half-saturation O2 tension (P 50) of the Hb to GTP than to ATP at the same concentration, correlates with greater effects of GTP on bothK T andK R. The pH and NTP dependence of the four Adair association constants and the calculated fractional populations of Hb molecules in different stages of oxygenation show that the autochthonous NTP effectors and protons stabilize the T structure and postpone the TR transition basic to cooperativity in fish Hb.The possible implications of the findings for aquatic respiration are discussed.Abbreviations ATP adenosine triphosphate - DPG 2,3-diphosphoglycerate (glycerate-2,3-bisphosphate) - GTP guanosine triphosphate - IHP inositol hexaphosphate - NTP nucleoside triphosphates In this paperK T andK R are defined as theassociation equilibrium constants instead of dissociation constants (as originally defined by Monod et al. 1965) to facilitate comparison with the Adair constants  相似文献   
14.
15.
The V79-4 Chinese hamster line was mutagenized and surviving clones screened for X-ray sensitivity using a replica microwell technique. One slightly sensitive clone and 3 clearly sensitive clones were isolated from approximately 5000 screened, and designated irs 1 to irs 4. The 3 more sensitive clones showed different responses to the genotoxic agents mitomycin C (MMC), ethyl methanesulphonate (EMS) and ultraviolet light (UV). irs 1 showed considerable sensitivity to all the agents tested, in the order MMC much greater than EMS greater than UV. irs 2 and irs 3 had similar sensitivities to EMS and to UV (EMS greater than UV) but irs 3 was more sensitive than irs 2 to MMC. None of these mutants is identical in phenotype to previously published mutants.  相似文献   
16.
Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.  相似文献   
17.
A third allotype of rabbit secretory component has been identified. The allotype previously referred to as t62 by our laboratory can now be subdivided into two allotypes, t62 and t63, with alloantisera capable of discriminating between the two. Results of family studies are consistent with a three allele system (t61, t62 and t63) at the t-locus. By SDS PAGE, electrophoretic mobilities of the multiple SC bands for each of the three allotypes are characteristic of the allotype; the apparent molecular sizes of the bands of the t62 allotype are 2 to 3 kDa lower than those for the t61 allotype. The banding patterns of the t61 and t63, although similar, are not identical to each other. Results of serologic cross-reaction studies and of tryptic peptide mapping studies suggest multiple structural differences between the allotypes as well as a closer relationship between t62 and t63 than between either of these allotypes and t61.  相似文献   
18.
The phorbol myristate acetate (PMA) stimulation of the human neutrophil NADPH-oxidase has been demonstrated through the activation of protein kinase C (PK-C), using light membrane fractions from nitrogen-cavitated cells. Both arachidonic acid (AA) and sodium dodecyl sulfate (SDS) can also generate an active oxidase in cellfree systems. That the source of O2- with AA and SDS activation is the same NADPH-oxidase as previously studied was confirmed by the similar pH optima and Km values for NADPH as those previously described for the O2- -generating activity harvested from pre-stimulated human neutrophils. In contrast to the stimulation by PMA, however, the stimulation of the NADPH-oxidase by AA and SDS does not appear to require protein kinase C activation: the action of AA and SDS is independent of the addition of PK-C cofactors to the system, and the inhibitor of PK-C activity, H-7, had no effect on the stimulation by AA or SDS. AA and SDS activation are comparable, but the level of NADPH-oxidase expression is sixfold greater with each of these agents than that obtained with a reconstituted PK-C system. The basis of this difference in oxidase expression is unclear, but these findings suggest strongly that although activated PK-C is capable of stimulating a dormant NADPH-oxidase in a cellfree system, this is not the sole pathway for oxidase activation.  相似文献   
19.
Restriction-site variation in and around the alpha 1-antitrypsin gene has been studied using two genomic probes. With use of restriction enzymes SstI, MspI, and AvaII, three polymorphic sites have been described with a 4.6-kb probe in the 5' portion of the gene. With use of a 6.5-kb probe, polymorphisms in the coding and 3' regions of the gene have been detected with AvaII, MaeIII, and TaqI. All of these polymorphisms are of sufficiently high frequency to be useful in genetic mapping studies. The polymorphisms with AvaII and MaeIII (6.5-kb probe) are particularly useful for prenatal diagnosis. PI types and M subtypes tend to be associated with specific DNA haplotypes; there are two different types of DNA haplotypes associated with PI M1. The extent of linkage disequilibrium differs throughout the region of the alpha 1-antitrypsin gene.  相似文献   
20.
The activation of phosphorylase kinase (EC 2.7.1.38; ATP:phosphorylase b phosphotransferase) by the catalytic subunit of cAMP-dependent protein kinase (EC 2.7.1.37; ATP:protein phosphotransferase) is inhibited by calmodulin. The mechanism of that inhibition has been studied by kinetic measurements of the interactions of the three proteins. The binding constant for calmodulin with phosphorylase kinase was found to be 90 nM when measured by fluorescence polarization spectroscopy. Glycerol gradient centrifugation studies indicated that 1 mol of calmodulin was bound to each phosphorylase kinase. Phosphorylation of the phosphorylase kinase did not reduce the amount of calmodulin bound. Kinetic studies of the activity of the catalytic subunit of cAMP-dependent protein kinase on phosphorylase kinase as a function of phosphorylase kinase and calmodulin concentrations were performed. The results of those studies were compared with mathematical models of four different modes of inhibition: competitive, noncompetitive, substrate depletion, and inhibition by a complex between phosphorylase kinase and calmodulin. The data conform best to the model in which the inhibitory species is a complex of phosphorylase kinase and calmodulin. The complex apparently competes with the substrate, phosphorylase kinase, which does not have exogenous calmodulin bound to it. In contrast, the phosphorylation of the synthetic phosphate acceptor peptide, Kemptide, is not inhibited by calmodulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号