首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   4篇
  240篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2012年   6篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1977年   2篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1953年   3篇
  1952年   2篇
  1947年   2篇
  1940年   2篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1924年   2篇
  1923年   3篇
  1920年   2篇
  1918年   3篇
  1910年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
21.
An analytical model for the determination of the permeability in the lacunar-canalicular porosity of bone using cyclic loading is described in this contribution. The objective of the analysis presented is to relate the lacunar-canalicular permeability to a particular phase angle that is measurable when the bone is subjected to infinitesimal cyclic strain. The phase angle of interest is the lag angle between the applied strain and the resultant stress. Cyclic strain causes the interstitial fluid to move. This movement is essential for the viability of osteocytes and is believed to play a major role in the bone mechanotransduction mechanism. However, certain bone fluid flow properties, notably the permeability of the lacunar-canalicular porosity, are still not accurately determined. In this paper, formulas for the phase angle as a function of permeability for infinitesimal cyclic strain are presented and mathematical expressions for the storage modulus, loss modulus, and loss tangent are obtained. An accurate determination of the PLC permeability will improve our ability to understand mechanotransduction and mechanosensory mechanisms, which are fundamental to the understanding of how to treat osteoporosis, how to cope with microgravity in long-term manned space flights, and how to increase the longevity of prostheses that are implanted in bone tissue.  相似文献   
22.
A model is presented that provides a resolution to a fundamental paradox in bone physiology, namely, that the strains applied to whole bone (i.e., tissue level strains) are much smaller (0.04-0.3 percent) than the strains (1-10 percent) that are necessary to cause bone signaling in deformed cell cultures (Rubin and Lanyon, J. Bone Joint Surg. 66A (1984) 397-410; Fritton et al., J. Biomech. 33 (2000) 317-325). The effect of fluid drag forces on the pericellular matrix (PM), its coupling to the intracellular actin cytoskeleton (IAC) and the strain amplification that results from this coupling are examined for the first time. The model leads to two predictions, which could fundamentally change existing views. First, for the loading range 1-20MPa and frequency range 1-20Hz, it is, indeed, possible to produce cellular level strains in bone that are up to 100 fold greater than normal tissue level strains (0.04-0.3 percent). Thus, the strain in the cell process membrane due to the loading can be of the same order as the in vitro strains measured in cell culture studies where intracellular biochemical responses are observed for cells on stretched elastic substrates. Second, it demonstrates that in any cellular system, where cells are subject to fluid flow and tethered to more rigid supporting structures, the tensile forces on the cell due to the drag forces on the tethering fibers may be many times greater than the fluid shear force on the cell membrane.  相似文献   
23.
24.
25.
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号