首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2563篇
  免费   381篇
  2021年   27篇
  2018年   20篇
  2017年   31篇
  2016年   37篇
  2015年   65篇
  2014年   85篇
  2013年   128篇
  2012年   110篇
  2011年   111篇
  2010年   80篇
  2009年   73篇
  2008年   97篇
  2007年   101篇
  2006年   84篇
  2005年   78篇
  2004年   84篇
  2003年   83篇
  2002年   99篇
  2001年   97篇
  2000年   76篇
  1999年   57篇
  1998年   27篇
  1997年   39篇
  1996年   34篇
  1995年   27篇
  1994年   34篇
  1993年   34篇
  1992年   67篇
  1991年   61篇
  1990年   63篇
  1989年   71篇
  1988年   64篇
  1987年   54篇
  1986年   49篇
  1985年   62篇
  1984年   42篇
  1983年   36篇
  1982年   29篇
  1981年   31篇
  1980年   26篇
  1979年   33篇
  1978年   32篇
  1977年   21篇
  1976年   22篇
  1975年   24篇
  1974年   41篇
  1973年   20篇
  1972年   39篇
  1970年   19篇
  1967年   19篇
排序方式: 共有2944条查询结果,搜索用时 62 毫秒
111.
The influence of topoisomerase I and gyrase mutations in Escherichia coli on the supercoiled density of recombinant plasmids and the stability of left-handed Z-DNA was investigated. The formation of Z-DNA in vivo by dC-dG sequences of different lengths was used to determine the effective plasmid supercoil densities in the mutant strains. The presence of Z-DNA in the cells was detected by linking number and EcoRI methylase inhibition assays. A change in the unrestrained superhelical tension in vivo directly effects the B- to Z-DNA transition. Alterations in the internal or external environment of the cells, such as the inactivation of gyrase or topoisomerase I, a gyrase temperature-sensitive mutant, or starvation of cells, have a dramatic influence on the topology of plasmids. Also, E. coli has significantly more superhelical strain than Klebsiella, Morganella, or Enterobacter. These studies indicate that linking deficiency and effective supercoil density are mutually independent variables of plasmid tertiary structure. A variety of factors, such as protein-DNA interactions, activity of topoisomerases, and the resulting supercoil density, contribute to the B to Z transition inside living cells.  相似文献   
112.
We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (less than or equal to 24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the intact molecule in stimulating process outgrowth; in contrast, the 7S domain and triple helix-rich fragments of collagen IV were inactive. Moreover, anti-NC1 antiserum inhibited neuritic outgrowth on collagen IV by 79%. In long-term (up to 28 d) cultures, neurons chronically exposed to collagen IV maintained a single axon but failed to form dendrites. Thus, the NC1 domain of collagen IV can alter neuronal development by selectively stimulating axonal growth. Comparison of collagen IV's effects to those of laminin revealed that these molecules exert quantitatively different effects on the rate of initial axon growth and the number of axons extended by sympathetic neurons. Moreover, neuritic outgrowth on collagen IV, but not laminin, was blocked by cycloheximide. We also observed differences in the receptors mediating the neurite-promoting activity of these proteins. Two different antisera that recognize beta 1 integrins each blocked neuritic outgrowth on both collagen IV and laminin; however, an mAb (3A3) specific for the alpha 1 beta 1 integrin inhibited collagen IV but not laminin-induced process growth in cultures of both sympathetic and dorsal root neurons. These data suggest that immunologically distinct integrins mediate the response of peripheral neurons to collagen IV and laminin.  相似文献   
113.
The regulation of glycine betaine accumulation has been investigated in Salmonella typhimurium. The size of the glycine betaine pool in the cells is determined by the external osmotic pressure and is largely independent of the external glycine betaine concentration. Analysis of the activity of the ProP and ProU transport systems suggests that other systems must be active in the regulation of the glycine betaine pool. Addition of p-chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulphonate (PCMBS) to cells that have accumulated glycine betaine provokes rapid loss of glycine betaine. The route of glycine betaine efflux under the influence of PCMB is independent of either the ProP or ProU transport systems. Rapid loss of the accumulated pool of glycine betaine in the presence of PCMB is specific to glycine betaine and proline; accumulated pools of serine and lysine are not significantly affected by the -SH reagent. A specific glycine betaine/proline efflux system is postulated on the basis of these data and its role in the regulation of glycine betaine and proline accumulation is discussed.  相似文献   
114.
An embryo-specific protein of barley (Hordeum vulgare).   总被引:2,自引:0,他引:2  
An immunological approach has been used to identify embryo-specific products that can be used as molecular markers of embryogenesis. Immunoadsorption of antisera to remove antigens common to embryos, meristematic cells and callus, revealed one major embryo-specific antigen, a polypeptide of 17 kDa. The antigen appeared at mid-stages of zygotic embryo formation and remained at similar levels up to six days post-germination of the seedling. The polypeptide could not be detected by protein staining, suggesting it is a non-abundant product. Appearance of the antigen could be induced by culture of zygotic embryos in vitro on abscisic acid (1 microM) or mannitol (9% mass/vol.). Cross-reactive products of near-identical molecular mass were observed in embryos of wheat, rye and oats but not distantly related cereals, nor embryos from dicotyledonous species. The timing of the appearance of the antigen was different in embryos formed from microspores during anther culture in vitro. In the cultured material, the 17-kDa polypeptide preceded the appearance of morphologically distinct embryonic structure.  相似文献   
115.
The low-Ca2+ response is a multicomponent virulence regulon of the human-pathogenic yersiniae in which 12 known virulence genes are coordinately regulated in response to environmental cues of temperature, Ca2+, and nucleotides such as ATP. Yersinial growth also is regulated, with full growth yield being permitted at 37 degrees C only if Ca2+ or a nucleotide is present. In this study, we constructed and characterized a mutant Yersinia pestis specifically defective in the gene encoding the V antigen, one of the virulence genes of the low-Ca2+ response. An in-frame internal deletion-insertion mutation was made by removing bases 51 through 645 of lcrV and inserting 61 new bases. The altered lcrV was introduced into the low-Ca2+ response plasmid in Y. pestis by allelic exchange, and the resulting mutant was characterized for its two-dimensional protein profiles, growth, expression of an operon fusion to another low-Ca2+ response virulence operon, and virulence in mice. The mutant had lost its Ca2+ and nucleotide requirement for growth, showed diminished expression of Ca2(+)-and nucleotide-regulated virulence genes, and was avirulent in mice. The mutation could be complemented with respect to the growth property by supplying native V antigen operon sequences in trans in high copy number (on pBR322). Partial complementation of the growth defect and almost complete complementation of the virulence defect were seen with a lower-copy-number complementing replicon (a pACYC184 derivative). The data are consistent with the interpretation that V antigen is bifunctional, with a role in regulating growth and expression of low-Ca2+ response virulence genes in addition to its putative role as a secreted virulence protein.  相似文献   
116.
We show that the expression of the gene encoding glial fibrillary acidic protein (GFAP) gene is affected by at least three cis-acting elements. A positive regulatory element that is located between nucleotides -1,631 and -1,479 can confer cell type-specific expression on a heterologous gene. A second regulatory element is located between nucleotides -97 and -80. The third is a negative regulatory element that is located within the first intron of the gene. Deletion of this element activates GFAP expression in HeLa cells, and affects promoter function in glioma cells.  相似文献   
117.
The fifth phage resistance factor from the prototype phage-insensitive strain Lactococcus lactis subsp. lactis ME2 has been characterized and sequenced. The genetic determinant for Prf (phage resistance five) was subcloned from the conjugative plasmid pTN20, which also encodes a restriction and modification system. Typical of other abortive resistance mechanisms, Prf reduces the efficiency of plaquing to 10(-2) to 10(-3) and decreases the plaque size and burst size of the small isometric-headed phage p2 in L. lactis subsp. lactis LM0230. However, normal-size plaques occurred at a frequency of 10(-4) and contained mutant phages that were resistant to Prf, even after repeated propagation through a sensitive host. Prf does not prevent phage adsorption or promote restriction and modification activities, but 90% of Prf+ cells infected with phage p2 die. Thus, phage infections in Prf+ cells are aborted. Prf is effective in both L. lactis subsp. lactis and L. lactis subsp. cremoris strains against several small isometric-headed phages but not against prolate-headed phages. The Prf determinant was localized by Tn5 mutagenesis and subcloning. DNA sequencing identified a 1,056-nucleotide structural gene designated abiC. Prf+ expression was obtained when abiC was subcloned into the lactococcal expression vector pMG36e. abiC is distinct from two other lactococcal abortive phage resistance genes, abiA (Hsp+, from L. lactis subsp. lactis ME2) and abi416 (Abi+, from L. lactis subsp. lactis IL416). Unlike abiA, the action of abiC does not appear to affect DNA replication. Thus, abiC represents a second abortive system found in ME2 that acts at a different point of the phage lytic cycle.  相似文献   
118.
119.
120.
A cytoplasmic chaperonin that catalyzes beta-actin folding.   总被引:27,自引:0,他引:27  
Y Gao  J O Thomas  R L Chow  G H Lee  N J Cowan 《Cell》1992,69(6):1043-1050
We have isolated a cytoplasmic chaperonin based on its ability to catalyze the folding of denatured beta-actin. The cytoplasmic chaperonin is organized as a multisubunit toroid and requires Mg2+ and ATP for activity. The folding reaction proceeds via the rapid ATP-independent formation of a binary complex, followed by a slower ATP-dependent release of the native product. Electron microscopic observations reveal a striking structural change that occurs upon addition of Mg2+ and ATP. The eukaryotic cytoplasm thus contains a chaperonin that is functionally analagous to its prokaryotic, mitochondrial, and chloroplastic counterparts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号