首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2495篇
  免费   233篇
  国内免费   1篇
  2023年   13篇
  2022年   26篇
  2021年   61篇
  2020年   24篇
  2019年   29篇
  2018年   44篇
  2017年   38篇
  2016年   67篇
  2015年   108篇
  2014年   114篇
  2013年   153篇
  2012年   181篇
  2011年   208篇
  2010年   125篇
  2009年   107篇
  2008年   133篇
  2007年   130篇
  2006年   130篇
  2005年   110篇
  2004年   91篇
  2003年   90篇
  2002年   104篇
  2001年   52篇
  2000年   45篇
  1999年   30篇
  1998年   18篇
  1997年   22篇
  1996年   15篇
  1995年   12篇
  1994年   13篇
  1993年   13篇
  1992年   20篇
  1991年   26篇
  1990年   17篇
  1989年   22篇
  1988年   26篇
  1987年   23篇
  1986年   20篇
  1985年   29篇
  1984年   18篇
  1983年   16篇
  1982年   15篇
  1981年   9篇
  1979年   16篇
  1978年   9篇
  1975年   13篇
  1974年   16篇
  1973年   10篇
  1972年   19篇
  1967年   8篇
排序方式: 共有2729条查询结果,搜索用时 15 毫秒
91.
Liver in a dish     
There exists a worldwide shortage of donor livers for transplant. This may not pose a problem in the future, as Takebe et al. have recently grown functional “liver buds” from stem cells in a dish.Since the discovery of human induced pluripotent stem cells (hiPSCs), the promise of generating organs from patients'' iPSCs has received considerable attention as an alternative to donor organ transplantation. Over the past few years, much progress has been made in the differentiation of various somatic cell types from human pluripotent stem cells (hPSCs). However, only a limited number of reports have described the generation of three-dimensional organoids from human stem cells in vitro, including the optic cup1, the pituitary epithelium2, and from adult stem cells — the gut epithelium3. These experimental systems share several common features: 1) they all begin with ES cells or adult stem cells, 2) the cells grow as floating aggregates, and 3) all three organoids (optic cup, pituitary epithelium, and gut crypt) are epithelial structures4. In addition, one particularly unexpected finding has emerged from each of these experiments, namely that a high level of self-organization seems to play a substantial role in establishing local tissue architecture and assembly of the resulting organoid.Despite these remarkable examples of organogenesis in vitro, the likelihood of growing a complex vascularized organ in dish, such as liver, has seemed less plausible. Takebe et al.5 have made the implausible possible by focusing on the first steps of organogenesis, namely the cellular interactions that occur during liver bud development. The earliest stage of liver organogenesis involves the outgrowth of a group of endodermal and mesenchymal cells from the posterior foregut that soon thereafter become vascularized to form a liver bud. During these morphogenetic changes, a key element to the formation of a liver bud is the orchestration of signals between three types of cells: liver, mesenchymal and endothelial progenitors. Takebe et al. posited that they might be able to recapitulate liver bud formation in vitro by mixing hepatic endoderm cells together with endothelial and mesenchymal cells. To test this idea, they prepared hepatic endoderm cells (hiPSC-HEs) from hiPSCs by directed differentiation, and then co-cultured them with human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs). Two days later, the cells had self-assembled into a 5-mm-long, three-dimensional tissue that was reminiscent of “liver bud” structures in vivo. To further mature these hiPSC-derived “liver buds” (hiPSC-LBs), they transplanted them into immune-compromised mice where the hiPSC-LBs connected with the host vasculature within 48 h and formed functional vascular networks similar in density and morphology to those of human adult livers. Transplanted hiPSC-LBs started functioning about 10 days later, producing human albumin and metabolizing drugs in a similar fashion to human liver. Perhaps most remarkably, Takebe et al. demonstrated that these hiPSC-LBs could rescue liver function when transplanted to mice with liver failure.The differences between Takebe and his colleagues'' study and other studies designed to reproduce organogenesis in vitro are that they started with several different cell types; the cells were grown initially in a two-dimensional petri dish; and the result was a solid liver organoid that can be vascularized and function after transplantation. For many, the most striking finding is the high level of self-organization in this experimental differentiation system. By analogy, it is equivalent to delivering all of the materials necessary to build a house to a construction site and returning several days later to find a fully assembled home. Clearly the principles of self-organization and self-assembly are playing much more profound roles during differentiation than we previously thought and it is likely what has been reported by Takebe et al. represents only the tip of the iceberg. One takeaway from the way that Takebe and his colleagues'' tackled the problem of in vitro organogenesis may be their focus on the earliest processes in organ development, as it is likely to identify the right combination of cell types for organogenesis to proceed. Nonetheless, this study has raised several new questions. How does self-organization and self-assembly occur in vitro? What is the molecular logic of this process? How can we manipulate a self-organizing system so that we might guide it in the direction we want it to go? And ultimately, could we use a similar strategy to produce other complex solid organs in vitro, e.g., lung, kidney, and pancreas?As summarized by Takebe et al., this study demonstrates a “proof-of-concept” that “organ-bud transplantation provides a promising new approach to study regenerative medicine”. However, a significant amount of work will be required before these findings can be translated into a therapy. First, these little liver buds do not form a complete adult liver. They are missing a number of critical cell types, chief among them biliary epithelial cells and thus bile ducts. How to produce a fully functional liver remains a challenge. Second, in order to translate these findings into human therapies, a key step will be to scale this process so that one can produce a liver bud large enough for transplantation into humans. Of course, there is always the question about safety when it comes to stem cell-based therapies. Undifferentiated stem cells left in transplants tend to form tumors and the use of oncogenes for iPS reprogramming needs to be resolved before iPS cells can be considered for human therapy. Despite the reality that clinical therapies based on this report remain a distant promise, it is inspirational to consider how quickly the field is moving and exciting to speculate about what might come next. If one considers that a drug has been identified to specifically eliminate pluripotent but not differentiated hPSCs6 and that a recent report showed that pluripotent stem cells could be induced from mouse somatic cells by using only small molecules7, we may have good reason to believe that one day in the not too distant future we could grow patient-customized organs for transplantation (Figure 1).Open in a separate windowFigure 1This figure outlines the strategy of generating organs from patients'' iPSCs as an alternative to transplantation. Patient-derived pluripotent stem cells (iPSCs) can be differentiated in vitro to desired cell types. As demonstrated by Takebe et al.5, different cell types can be co-cultured in dish to recapitulate the earliest process of organogenesis and form three-dimensional organ buds. These in vitro produced organ buds could be used for transplantation in the future.  相似文献   
92.
93.
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.  相似文献   
94.
A socioeconomic model is used to estimate the land‐use implications on the U.S. Conservation Reserve Program from potential increases in second‐generation biofuel production. A baseline scenario with no second‐generation biofuel production is compared to a scenario where the Renewable Fuels Standard (RFS2) volumes are met by 2022. We allow for the possibility of converting expiring CRP lands to alternative uses such as conventional crops, dedicated second‐generation biofuel crops, or harvesting existing CRP grasses for biomass. Results indicate that RFS2 volumes (RFS2‐v) can be met primarily with crop residues (78% of feedstock demand) and woody residues (19% of feedstock demand) compared with dedicated biomass (3% of feedstock demand), with only minimal conversion of cropland (0.27 million hectares, <1% of total cropland), pastureland (0.28 million hectares of pastureland, <1% of total pastureland), and CRP lands (0.29 million hectares of CRP lands, 3% of existing CRP lands) to biomass production. Meeting RFS2 volumes would reduce CRP re‐enrollment by 0.19 million hectares, or 4%, below the baseline scenario where RFS2 is not met. Yet under RFS2‐v scenario, expiring CRP lands are more likely to be converted to or maintain perennial cover, with 1.78 million hectares of CRP lands converting to hay production, and 0.29 million hectares being harvested for existing grasses. A small amount of CRP is harvested for existing biomass, but no conversion of CRP to dedicated biomass crops, such as switchgrass, are projected to occur. Although less land is enrolled in CRP under RFS2‐v scenario, total land in perennial cover increases by 0.15 million hectares, or 2%, under RFS2‐v. Sensitivity to yield, payment and residue retention assumptions are evaluated.  相似文献   
95.
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.  相似文献   
96.
MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development.

The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg·kg?1 and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg·kg?1 were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined.

The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ~0.5 µg·mL?1. Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ~0.3; saturation of target-mediated uptake in non–tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent.

The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.  相似文献   
97.

Importance

Acute ischemic stroke is a leading cause of death and disability worldwide. Several recent clinical trials have shown that endovascular treatment improves clinical outcomes among patients with acute ischemic stroke.

Objective

To provide an overall and precise estimate of the efficacy of endovascular treatment predominantly using second-generation mechanical thrombectomy devices (stent-retriever devices) compared to medical management on clinical and functional outcomes among patients with acute ischemic stroke.

Data Sources

MEDLINE, EMBASE, Cochrane Collaboration Central Register of Controlled Clinical Trials, Web of Science, and NIH ClinicalTrials.gov were searched through November 2015.

Study Selection

Searches returned 3,045 articles. After removal of duplicates, two authors independently screened titles and abstracts to assess eligibility of 2,495 potentially relevant publications. From these, 38 full-text publications were more closely assessed. Finally, 5 randomized controlled trials of endovascular treatment with predominant use of retrievable stents were selected.

Data Extraction and Synthesis

Three authors independently extracted information on participant and trial characteristics and clinical events using a standardized protocol. Random effects models were used to pool endovascular treatment effects across outcomes.

Main Outcomes and Measures

The primary outcome was better functional outcome as measured on the modified Rankin Scale at 90 days of follow-up. Secondary outcomes included all-cause mortality and symptomatic intra-cerebral hemorrhage.

Results

Five trials representing 1,287 patients were included. Overall, patients randomized to endovascular therapy experienced 2.22 times greater odds of better functional outcome compared to those randomized to medical management (95% CI, 1.66 to 2.98; P < 0.0001). Endovascular therapy was not associated with mortality [OR (95% CI), 0.78 (0.54, 1.12); P = 0.1056] or symptomatic intracerebral hemorrhage [OR (95% CI), 1.19 (0.69, 2.05); P = 0.5348]. Meta-regression analysis suggested that shorter times from stroke onset to groin puncture and from stroke onset to reperfusion result in better functional outcomes in ischemic stroke patients (P = 0.0077 and P = 0.0089). There were no significant differences in the beneficial effects of endovascular treatment on functional outcomes across categories of gender, age, stroke severity, ischemic changes on computed tomography, or intravenous tissue plasminogen activator administration.

Conclusions and Relevance

This meta-analysis demonstrated superior functional outcomes in subjects receiving endovascular treatment compared to medical management. Further, this analysis showed that acute ischemic stroke patients may receive enhanced functional benefit from earlier endovascular treatment.  相似文献   
98.

Background

Smoking, alcohol consumption, poor diet and low levels of physical activity significantly contribute to the burden of illness in developed countries. Whilst the links between specific and multiple risk behaviours and individual chronic conditions are well documented, the impact of these behaviours in mid-life across a range of later life outcomes has yet to be comprehensively assessed. This review aimed to provide an overview of behavioural risk factors in mid-life that are associated with successful ageing and the primary prevention or delay of disability, dementia, frailty and non-communicable chronic conditions.

Methods

A literature search was conducted to identify cohort studies published in English since 2000 up to Dec 2014. Multivariate analyses and a minimum follow-up of five years were required for inclusion. Two reviewers screened titles, abstracts and papers independently. Studies were assessed for quality. Evidence was synthesised by mid-life behavioural risk for a range of late life outcomes.

Findings

This search located 10,338 individual references, of which 164 are included in this review. Follow-up data ranged from five years to 36 years. Outcomes include dementia, frailty, disability and cardiovascular disease. There is consistent evidence of beneficial associations between mid-life physical activity, healthy ageing and disease outcomes. Across all populations studied there is consistent evidence that mid-life smoking has a detrimental effect on health. Evidence specific to alcohol consumption was mixed. Limited, but supportive, evidence was available relating specifically to mid-life diet, leisure and social activities or health inequalities.

Conclusions

There is consistent evidence of associations between mid-life behaviours and a range of late life outcomes. The promotion of physical activity, healthy diet and smoking cessation in all mid-life populations should be encouraged for successful ageing and the prevention of disability and chronic disease.  相似文献   
99.
Plasma membrane Ca2+-ATPase (PMCA) plays a vital role in maintaining cytosolic calcium concentration ([Ca2+]i). Given that many diseases have modified PMCA expression and activity, PMCA is an important potential target for therapeutic treatment. This study demonstrates that the non-toxic, naturally-occurring polyphenol resveratrol (RES) induces increases in [Ca2+]i via PMCA inhibition in primary dermal fibroblasts and MDA-MB-231 breast cancer cells. Our results also illustrate that RES and the fluorescent intracellular calcium indicator Fura-2, are compatible for simultaneous use, in contrast to previous studies, which indicated that RES modulates the Fura-2 fluorescence independent of calcium concentration. Because RES has been identified as a PMCA inhibitor, further studies may be conducted to develop more specific PMCA inhibitors from RES derivatives for potential therapeutic use.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号